• 제목/요약/키워드: Heat slug

검색결과 36건 처리시간 0.02초

고출력 세라믹 LED 패키지의 방열 특성 평가 및 해석 연구 (Thermal Characterization and Analysis of High Power Ceramic LED Package)

  • 조현민;최원길;정봉만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.315-316
    • /
    • 2009
  • 본 논문에서는 1W 급 이상의 고출력 LED 용 패키지로서 세라믹 LTCC 적층 패키지의 방열 특성을 평가하고 열해석 결과와의 차이에 대해 고찰하였다. 특히, 세라믹 패키지의 방열 특성을 향상시키기 위해 Thermal Via와 Heat slug를 LED Chip 하단부에 위치시켰을 때 방열 특성을 평가하기 위해 Transient Thermal Test를 이용하여 각각의 경우에 대한 열저항을 평가하여 방열 특성의 항상 정도를 확인하였으며, 열해석 시뮬레이션을 통해 얻은 결과와 비교하였다. 평가 결과 Heat slug를 배치한 패키지가 열저항이 $8^{\circ}C/W$로서 가장 우수한 특성을 보여주었으며, 열해석 결과와의 차이에 대해서는 광출력으로 방출된 전력을 계산하여 보정함으로써 $1^{\circ}C$ 이하의 편차를 보여주는 결과를 얻을 수 있었다.

  • PDF

MCPCB의 온도에 따른 고출력 LED의 광학적, 열적 영향력 분석 (Optical and Thermal Influence Analysis of High-power LED by MCPCB temperature)

  • 이승민;양종경;조주웅;이종찬;박대희
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2276-2280
    • /
    • 2008
  • In this paper, we present thermal dependancy of LED package element by changing temperature of MCPCB for design high efficiency LED lamp, and confirmed influence of LED chip against temperature with analysis of thermal resistance and thermal capacitance. As increasing temperature, WPOs were decreased from 25 to 22.5 [%] and optical power were also decreased. that is decreased reason of optical power that forward voltage was declined by decrease of energy bandgap. Therefore optical power by temperature of MCPCB should consider to design lamp for street light and security light. Moreover, compensation from declined optical efficiency is demanded when LED package is composed. Also, thermal resistances from chip to metal PCB were decreased from 12.18 to 10.8[$^{\circ}C/W$] by changing temperature. Among the thermal resistances, the thermal resistance form chip to die attachment was decreased from 2.87 to 2.5[$^{\circ}C/W$] and was decreased 0.72[$^{\circ}C/W$] in Heat Slug by chaning temperature. Therefore, because of thermal resistance gap in chip and heat slug, reliability and endurance of high power LED affect by increasing non-radiative recombination in chip from heat.

Performance Analysis of The KALIMER Breakeven Core Driver Fuel Pin Based on Conceptual Design Parameters

  • Lee Dong Uk;Lee Byoung Oon;Kim Young Gyun;Lee Ki Bog;Jang Jin Wook
    • Nuclear Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.356-368
    • /
    • 2003
  • Material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the updated driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the end of life is predicted to be $68.61\%$ and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is $1.93\%$, satisfying the preliminary design criterion ($3\%$) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

스테인리스 강판(SUS420)의 냉간단조용 금형개발에 관한 연구 (A Study on the Development of Cold Forging Dies for Stainless Steel Sheet (SUS420))

  • 김엽래;김세환;유헌일
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.877-885
    • /
    • 1995
  • Cold forging die for metal scissor is made by electric discharge machine. The impression of female die is made by electric discharge machine, the heat treatment is applied, and the impression is polished. When we forge goods by using this kind of die, the abrasion is severe and the crack occurs after forging about 240 strokes. Because the die should be frequently produced in the case, the cost rises, the work is delayed, and the precesion of goods is not good. Therefore, the electric discharge machine was not used in this study. Main die was produced by making hob, installing the hob to cold hobbing press, indenting the die material, and cold hobbing the impression. The die life was increased to 5,000-6,000 strokes in this case. In the future study, the die life will be increased to 10,000 strokes by changing the following : (1) the pre-treatment of slug, (2) the structure of die block, (3) the heat treatment of die material

실리콘 리플렉터를 적용한 고효율 고출력 LED 패키지 개발 (Development of High Efficiency and High Power LED Package for Applying Silicone-Reflector)

  • 정희석;이영식;이정근;강한림;황명근
    • 조명전기설비학회논문지
    • /
    • 제27권9호
    • /
    • pp.1-5
    • /
    • 2013
  • We developed high-efficient 6W-LED package with simple structure by applying Heat Slug and silicone-reflector. LED package was manufactured in $8.5{\times}8.5mm$ sized multi-chip structure having thickness of $500{\mu}m$ achieved by bonding silicon-reflector with prepreg on top of the plate after implementing the reflector placed on copper substrate Half Etching by thickness of $200{\mu}m$. The luminous flux, luminous efficacy, correlated color temperature, color rendering index and thermal resistance of developed LED was evaluated, and it verified the application of products by applying it to 120W-LED road luminaires through simulation. The luminous efficacy of LED package reached over 130lm/W, and it is possible to be manufactured into 120W-LED road luminaires using 18 packages. In addition, the simulation results showed average of horizontal illuminance and overall illuminance uniformity that is suitable for three-lane road.

마이크로채널 내의 FC-72 흐름응축에 관한 수치적 연구 (Numerical Study on FC-72 Condensing Flow in a Micro-Channel)

  • 김성민
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.30-34
    • /
    • 2015
  • This study concerns flow and heat transfer characteristics of FC-72 condensing flow in a micro-channel. A computational model of condensing flow with a hydraulic diameter of 1 mm is constructed using the FLUENT computational fluid dynamics code. The computed void fraction contour plots are presented for different mass velocities. The smooth-annular, wavy-annular, transition and slug flows are observed with the model, which are quite similar to those observed in a micro-channel experiment. The computed two-phase condensing heat transfer coefficient is compared with previous empirical correlation for two-phase condensation heat transfer in micro-channels.

미소중력하의 기액이상류의 유동양식 (Flow Patterns of Gas-Liquid Two-phase Flow under Microgravity)

  • 최부홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.460-465
    • /
    • 2003
  • Microgravity experiments were conducted to determine the effect of liquid and gas superficial velocities on flow behaviors. Flow behaviors observed under microgravity conditions can be classified into five flow patterns: bubble. Taylor bubble, slug, semi-annular and annular flows. Transition boundary between four flow patterns could be determined by drift-flux model. It was also found that the effect of gravity and pipe inclination on flow pattern transition was not significant in the inertia dominant region.

Modeling of Irradiation Temperatures and Constituent Redistribution in U-10Zr Metallic Fuel

  • Nam, Cheol;Hwang, Woan
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.207-213
    • /
    • 1997
  • The computational scheme on a irradiation temperature of U-10Zr fuel was established considering porosity formation, bond sodium infiltration and constituent redistribution. Thermotransport theory was adapted to model the redistribution phenomenon. As a results, the bond sodium seems to be logged in the outer region of fuel slug. The main driving force for constituent redistribution appears to be the Zr solubility change along to radial position of the fuel. It is evident that the heat of transport also has some contribution to the redistribution.

  • PDF

KAIST-CIWH Computer Code and a Guide Chart to Avoid Condensation-Induced Water Hammer in Horizontal Pipes

  • Chun, Moon-Hyun;Yu, Seon-Oh
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.618-635
    • /
    • 2000
  • A total of 17 experimental data for the onset of slugging, which is assumed to be the precursor of the condensation-induced waterhammer (CIWH), have been obtained for various How rates of water Incorporating the most recent correlations of interfacial heat transfer and friction factor developed for a circular geometry and using an improved criterion of transition from stratified to a slug flow, two existing analytical models to predict lower and upper bounds for CIWH have been upgraded. Applicability of the present as well as existing CIWH models has been tested by comparison with two sets of CIWH data. The result of this comparison shows that the applicability of the present as well as existing models is reasonably good. Based on the present models for CIWH, a computer code entitled as“KAIST-CIWH”has been developed and sample guide charts to find CIWH free regions for a given combination of major flow parameters in a long horizontal pipe have been presented along with the results of parametric studies of major parameters (D, P, $T_{f,in}$, and L/D) on the critical inlet water flow rate($W_{f,in}_crit$ for both lower and upper bounds. In addition, two simple formulas for lower and upper bounds that can be used in an emergency for quick results have been presented.

  • PDF

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.