• Title/Summary/Keyword: Heat shock protein genes

Search Result 139, Processing Time 0.023 seconds

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

cis-Prenyltransferase interacts with a Nogo-B receptor homolog for dolichol biosynthesis in Panax ginseng Meyer

  • Nguyen, Ngoc Quy;Lee, Sang-Choon;Yang, Tae-Jin;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.403-410
    • /
    • 2017
  • Background: Prenyltransferases catalyze the sequential addition of isopentenyl diphosphate units to allylic prenyl diphosphate acceptors and are classified as either trans-prenyltransferases (TPTs) or cis-prenyltransferases (CPTs). The functions of CPTs have been well characterized in bacteria, yeast, and mammals compared to plants. The characterization of CPTs also has been less studied than TPTs. In the present study, molecular cloning and functional characterization of a CPT from a medicinal plant, Panax ginseng Mayer were addressed. Methods: Gene expression patterns of PgCPT1 were analyzed by quantitative reverse transcription polymerase chain reaction. In planta transformation was generated by floral dipping using Agrobacterium tumefaciens. Yeast transformation was performed by lithium acetate and heat-shock for $rer2{\Delta}$ complementation and yeast-two-hybrid assay. Results: The ginseng genome contains at least one family of three putative CPT genes. PgCPT1 is expressed in all organs, but more predominantly in the leaves. Overexpression of PgCPT1 did not show any plant growth defect, and its protein can complement yeast mutant $rer2{\Delta}$ via possible protein-protein interaction with PgCPTL2. Conclusion: Partial complementation of the yeast dolichol biosynthesis mutant $rer2{\Delta}$ suggested that PgCPT1 is involved in dolichol biosynthesis. Direct protein interaction between PgCPT1 and a human Nogo-B receptor homolog suggests that PgCPT1 requires an accessory component for proper function.

Soluble Production of CMP-Neu5Ac Synthetase by Co-expression of Chaperone Proteins in Escherichia coli (샤페론 단백질 동시 발현기술을 이용한 수용성 CMP-Neu5Ac Synthetase 생산)

  • Choi, Hwa Young;Li, Ling;Cho, Seung Kee;Lee, Won-Heong;Seo, Jin-Ho;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.190-193
    • /
    • 2014
  • CMP-Neu5Ac synthetase is a key enzyme for the synthesis of CMP-Neu5Ac, which is an essential precursor of sialylated glycoconjugates. For the soluble expression of the CMP-Neu5Ac synthetase gene (neuA) from Escherichia coli K1, various heat shock proteins were co-expressed in E. coli BL21 (DE3) Star. In order to do this, a pG-KJE8 plasmid, encoding genes for GroEL-ES and DnaK-DnaJ-GrpE, was co-transformed with neuA and was expressed at $20^{\circ}C$ by the addition of 0.01 mM IPTG and 0.005 mg/ml L-arabinose. The co-expression of a variety of heat shock proteins resulted in the remarkably improved production of soluble CMP-Neu5Ac synthetase in E. coli.

Mechanism of Far-infrared how to affect the human body (원적외선의 인체작용메카니즘)

  • Kim, Jae-Yoon;Park, Young-Han;Park, Don-Mork;Park, Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.477-482
    • /
    • 2001
  • Until now, it has not been well known for Far-infrared(FIR) how to affect to the human body. We introduced and presumed the mechanism of FIR based on molecular biology in this study, as below. The human body is composed of proteins which get easily changed by a thermal factor (about 42 $^{\circ}$C over). FIR with low temperature can deeply penetrate on the human body composed things without troublesome, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). When FIR penetrated on the human body, it would inhibit the abnormal genes and cells expression, and then information of DNA and RNA would be reexpressed for arranging DNA and RNA abnormal state. As FIR's receptors in the body, it colud be presumed that N-glycosyl linkage of purine and deoxyribose, RNA splicing process, and heat shock protein.

  • PDF

Monitoring of the Distribution of Ambient Air Particles in Seoul Using a Cascade Impactor and the Particle Toxicity

  • Park, Eun-Jung;Kim, Dae-Seon;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.2
    • /
    • pp.99-109
    • /
    • 2010
  • The distribution of ambient air particles varies according to climate, industries, and other sources. In this study, ambient air particles (less than 12.1 ${\mu}m$) were monitored from February to August, 2007 as 12 different fractions sorted by a cascade impactor. Particles in the size range from 0.33 ${\mu}m$ to 0.76 ${\mu}m$ comprised the main fraction of ambient air particles in Seoul, Korea. On the day of an Asian dust event, the particle fraction size increased to 1.25~2.5 ${\mu}m$. The different sized particle fractions were also monitored for metals and were found to contain toxic heavy metals including Pb, Cd, Hg, Cr and As. Particle preparations were significantly cytotoxic when exposed to cultured BEAS-2B cells. Microarray analysis of the treated cells indicated a significant up-regulation of a number of genes associated with oxidative stress, including metallothionein, heme oxygenase-1, heat shock protein 70, and NAD(P)H dehydrogenase-1.

Genomic Organization of Heat Shock Protein Genes of Silkworm Bombyx mori

  • Velu, Dhanikachalam;Ponnuvel, Kangayam M.;Qadri, Sayed M. Hussaini
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2007
  • The Hsp 20.8 and Hsp 90 cDNA sequence retrieved from NCBI database and consists of 764 bp and 2582 bp lengths respectively. The corresponding cDNA homologus sequences were BLAST searched in Bombyx mori genomic DNA database and two genomic contigs viz., BAAB01120347 and AADK01011786 showed maximum homology. In B. mori Hsp 20.8 and Hsp 90 is encoded by single gene without intron. Specific primers were used to amplify the Hsp 20.8 gene and Hsp 90 variable region from genomic DNA by using the PCR. Obtained products were 216 bp in Hsp 20.8 and 437 bp in Hsp 90. There was no variation found in the six silkworm races PCR products size of contrasting response to thermal tolerance. The comparison of the sequenced nucleotide variations through multiple sequence alignment analysis of Hsp 90 variable region products of three races not showed any differences respect to their thermotolerance and formed the clusters among the voltinism. The comparison of aminoacid sequences of B. mori Hsps with dipteran and other insect taxa revealed high percentage of identity growing with phylogenetic relatedness of species. The conserved domains of B. mori Hsps predicted, in which the Hsp 20.8 possesses ${\alpha}-crystallin$ domain and Hsp 90 holds HATPase and Hsp 90 domains.

First Report of Botrytis Mold Caused by Botrytis cinerea on Peonies (Paeonia lactiflora Pall.)

  • Kim, Hyo Jeong;Park, Min Young;Ma, Kyung-Cheol;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.279-282
    • /
    • 2020
  • In 2019, symptoms of Botrytis mold on the peony (Paeonia lactiflora Pall.) 'Sarah Bernhardt' were observed during a survey of the commercial greenhouses of Gangjin County, South Korea. The initial symptoms, small brown spots, were observed mainly at the leaf margins. The lesions extended to the interior of leaves forming irregular spots in which abundant conidia developed. Fungal colonies were obtained from surface-sterilized tissue excised from growing edges of the lesions that were transferred to potato dextrose agar. Melanized irregular sclerotia were formed in these colonies after 40 days at 8℃. Molecular phylogeny based on sequences of genes for glyceraldehyde-3-phosphate dehydrogenase, heat-shock protein 60, and RNA polymerase subunit II were highest for the PBC-2 isolate to the type strains of Botrytis cinerea, rather than other Botrytis species associated with peony diseases. Following Koch's postulates, healthy Sarah Bernhardt plants were inoculated with a foliar application of conidial suspensions of the isolate PBC-2. Following incubation under humidity with a 12 hr photoperiod for 7 days, symptoms developed on the leaf margins that were identical to those observed in the greenhouses. This study is the first report of Botrytis blight caused by B. cinerea on peonies grown in commercial greenhouses in South Korea.

Comparison of the Genomic Structure of the Heat Shock Protein-88(Hsp88) Genes in the Four Entomopathogenic Fungal Strains, Paecilomyces tenuipes Jocheon-1, P. tenuipes, Cordyceps militaris, and C. pruinosa

  • Liu, Ya-Qi;Park, Nam-Sook;Kim, Yong-Gyun;Kim, Keun-Ki;Park, Hyun-Chul;Son, Hong-Joo;Lee, Sang-Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.99-110
    • /
    • 2012
  • Comparison on the genomic structure and phylogenetic relationship of the Hsp88 genes from P. tenuipes Jochoen-1, P. tenuipes, C. militaris and C. pruinosa was described. The Hsp88 genes from the three entomopathogenic strains, P. tenuipes Jocheon-1(strain), P. tenuipes(original species), and C. militaris contain the identical genomic structure, namely 5 introns and 6 exons with the length of 13, 62, 32, 1,438, 306, 288 nucleotides encoding 713 amino acid residues, whereas in case of C. pruinosa, it contains 4 introns and 5 exons with the length of 13, 62, 32, 1,744, 288 nucleotides encoding 713 amino acid residues. The genomic DNA length of the Hsp88 genes from P. tenuipes Jocheon-1 and P. tenuipes are both 2,600 nucleotides long in size. The Hsp88 genes from C. militaris and C. pruinosa are 2,582, 2,576 nucleotides long in size, respectively. Hsp88 genes of the P. tenuipes Jochoen-1, P. tenuipes, C. militaris and C. pruinosa also contain the conserved ATP-binding domain. Phylogenetic analysis of the Hsp genes of the four strains tested in this study showed that the fungal Hsp88 is divided into two separate clades, ascomycetes and deutromycete. Within the ascomycetes fungal clade, the P. tenuipes Jochoen-1 and P. tenuipes formed a subgroup, on the other hand, C. militaris and C. pruinosa formed another subgroup. Pair-wise comparison of P. tenuipes Jocheon-1 Hsp88 with those of P. tenuipes, C. militaris and C. pruinosa Hsp88s revealed significant identity in deduced amino acid sequence among these strains. The P. tenuipes Jocheon-1 Hsp88 showed 99% identity with the P. tenuipes, 97% identity with the C. militaris, and 98% identity with the C. pruinosa.

Comparison for immunophysiological responses of Jeju and Thoroughbred horses after exercise

  • Khummuang, Saichit;Lee, Hyo Gun;Joo, Sang Seok;Park, Jeong-Woong;Choi, Jae-Young;Oh, Jin Hyeog;Kim, Kyoung Hwan;Youn, Hyun-Hee;Kim, Myunghoo;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.424-435
    • /
    • 2020
  • Objective: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. Methods: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. Results: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. Conclusion: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.

Change of Gene Expression Pattern of Mycobacterium tuberculosis H37Rv Against Host Immune Response in Infected Mouse Lung (결핵균 H37Rv에 감염된 마우스의 폐에서 면역 반응에 대항하는 Mtb 유전자의 발현 변화)

  • Lee, Hyo-Ji;Cho, Jung-Hyun;Kang, Su-Jin;Jung, Yu-Jin
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens to infect one third of world population. Th1-mediated immunity against Mtb infection is known as critical to express mycobacteriostatic function but it is not sufficient to resolve the infection. In this study, to verify the possibility Mtb itself change the gene expression to survive against host immune response, expression pattern of selected H37Rv genes, 16S rRNA, acr, fbpA, aceA, and ahpC, during the course of infection was measured with absolute quantitation method using real-time RT-PCR. The total number of transcripts of 16S rRNA increased during the course of infection, which was coincide with the increasing CFU. The total number of fbpA transcripts per CFU, which encode typical secreted Mtb antigen, Ag85A, increased for 10 days of infection before decreasing. The number of transcripts of acr per CFU, which encode heat shock protein, ${\alpha}$-crystallin, increased during the infection, and ahpC and aceA, they both are enzymes produced in oxidative stressful condition, increased for 20 days and then slightly decreased on day 30. These findings are one of survival strategy of pathogen evading host immune response lead to persistent infection inside host cells.