Browse > Article

Genomic Organization of Heat Shock Protein Genes of Silkworm Bombyx mori  

Velu, Dhanikachalam (Biotechnology Laboratory Central Sericultural Germplasm Resources Centre)
Ponnuvel, Kangayam M. (Biotechnology Laboratory Central Sericultural Germplasm Resources Centre)
Qadri, Sayed M. Hussaini (Biotechnology Laboratory Central Sericultural Germplasm Resources Centre)
Publication Information
International Journal of Industrial Entomology and Biomaterials / v.15, no.2, 2007 , pp. 123-130 More about this Journal
Abstract
The Hsp 20.8 and Hsp 90 cDNA sequence retrieved from NCBI database and consists of 764 bp and 2582 bp lengths respectively. The corresponding cDNA homologus sequences were BLAST searched in Bombyx mori genomic DNA database and two genomic contigs viz., BAAB01120347 and AADK01011786 showed maximum homology. In B. mori Hsp 20.8 and Hsp 90 is encoded by single gene without intron. Specific primers were used to amplify the Hsp 20.8 gene and Hsp 90 variable region from genomic DNA by using the PCR. Obtained products were 216 bp in Hsp 20.8 and 437 bp in Hsp 90. There was no variation found in the six silkworm races PCR products size of contrasting response to thermal tolerance. The comparison of the sequenced nucleotide variations through multiple sequence alignment analysis of Hsp 90 variable region products of three races not showed any differences respect to their thermotolerance and formed the clusters among the voltinism. The comparison of aminoacid sequences of B. mori Hsps with dipteran and other insect taxa revealed high percentage of identity growing with phylogenetic relatedness of species. The conserved domains of B. mori Hsps predicted, in which the Hsp 20.8 possesses ${\alpha}-crystallin$ domain and Hsp 90 holds HATPase and Hsp 90 domains.
Keywords
Genomic organization; Hsp; Bombyx mori; Domains; Phylogeny; Exon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goldsmith, M. R., T. Shimada and H. Abe (2005) Genetics and genomics of the silkworm Bombyx mori. Ann. Rev. Entomol. 50, 71-100   DOI   ScienceOn
2 Hightower, L. E. (1991) Heat shock stress protein, chaperones and proteotoxicity. Cell 66, 191-197   DOI   ScienceOn
3 Kampinga, H. H. (1993) Thermotolerance in mammalian cells: Protein denaturation and aggregation and stress proteins. J. Cell Sci. 104, 11-17
4 Lewis, S., R. D. Handy, B. Cordi, Z. Billinhurst and M. H. Depledge (1999). Stress proteins (HSP's): methods of detection and their use as an environmental biomarker. Ecotoxicology 8, 351-368   DOI   ScienceOn
5 Minami, M., M. Nakamura, Y. Emori and Y. Minami (2001) Both the N and C-terminal chaperone sites of Hsp 90 protein refolding. Eur. J. Biochem. 268, 2520-2524   DOI   ScienceOn
6 Pershad, G. D., R. K. Datta, H. V. Vijayakumar, S. K. Bhargava and M. S. Jolly (1986) Performance of some multivoltine races of Bombyx mori L. Sericologia 26, 295-301
7 Dean, R. L. and B. G. Atkinson (1983) The acquisition of thermal tolerance in larvae of Calpodes ethlius (Lepidoptera) and the in situ and in vitro synthesis of the heat shock proteins. Can. J. Biochem. Cell Biol. 61, 472-479   DOI   ScienceOn
8 Glover, C. V. C. (1982) Heat shock effects on protein dephosphorylation in Drosophila; Heat Shock from Bacteria to Man. Schlessinger, M. J., M. Ashburner and Tissieres A. (ed.), Cold Spring Harbor Laboratory, NY
9 Weich, W. J., J. Buchner, R. Zimmermann and U. Jackob (1992) Hsp 90 chaperones protein folding in vitro. Nature 358, 169-170   DOI   ScienceOn
10 Landais, I., J. M. Pommet, K. Mita, J. Nohata, S. Gimenez, P. Fournier, G. Devauchelle, D.C. Martine and M. Ogliastro (2001) Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda. Gene 271, 223-231   DOI   ScienceOn
11 Nath, B. B. and S. C. Lakhotia (1989) Heat shock response in ovarian nurse cells of Anopheles stephensi. J. Biosci. 14, 14- 152
12 Currie, S. and B. Tufts (1997). Synthesis of stress protein 70 (Hsp 70) in rainbow trout (Oncorhynchus mykiss) red blood cells. J. Exp. Biol. 200, 607-614
13 Nagaraja, G. M. and J. Nagaraju (1995) Genome fingerprinting of the silkworm Bombyx mori using random arbitrary primers. Electrophoresis 16, 1633-1638   DOI   ScienceOn
14 Sun, Y. and T. H. Mac Rae (2005) Small heat shock proteins: molecular structure and chaperone function. Cellular and Mol. Life Scie. 62, 2460-2476   DOI   ScienceOn
15 Joplin, K. H. and D. L. Denlinger (1990) Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 36, 239-249   DOI   ScienceOn
16 Pandey, P., A. Saleh, A. Nakazawa, S. Kumar, S. M. Srinivasula, V. Kumar, R. Weichselbaum, C. Nalin, E. S. Alnemri, D. Kufe and S. Kharbanda (2000) Negative regulation of cytochrome C-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19, 4310-4322   DOI   ScienceOn
17 Lange, B. M., A. Bachi, M. Wilm and C. Gonzalez (2000) Hsp 90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252-1262   DOI   ScienceOn
18 Holley, S. J. and K. R. Yamamoto (1995) A role fore Hsp 90 in retionoid receptor signal transduction. Mol. Biol. Cell 6, 1833-1842   DOI
19 Jakob, U., M. Gaestel, K. Engel and J. Buchner (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517-1520
20 Feder, M.E. and G. E. Hofmann (1999) Heat shock proteins, molecular chaperones and the stress response evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282   DOI   ScienceOn
21 Ritossa, F. M. (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18, 571- 573   DOI   ScienceOn
22 Fink, A. F. (1999) Chaperone-mediated protein folding. Physiol. Rev. 79, 425-449   DOI
23 Schlesinger, M. J. (1990) Heat shock proteins: a mini review. J. Biol. Chem. 265, 12111-12114
24 Becker, J. and E. A. Craig (1994) Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219, 11-23   DOI   ScienceOn
25 Haselback, M., T. Franzmann, D. Weinfurtner and J. Buchner (2005) Some like it hot: structure and function of small heat shock proteins. Nat. Struct. Mol. Biol. 12, 842-846   DOI   ScienceOn
26 Hayens, J. I., M. K. Duncan and J. Piatiogorsky (1996) Spatial and temporal activity of the alpha B-crystallin/small heat shock protein gene promoter in transegenic mice. Dev. Dyn. 207, 75-88   DOI   ScienceOn
27 Tissieres, A., H. K. Mitchell and U. Tracy (1974) Protein synthesis in salivary glands of D.melanogaster. Relation to chromosome puffs. J. Mol Biol 84, 389-398   DOI
28 Den Engelsman, J., D. Gerrits, W. W. de Jong, J. Robbins, K. Kato and W. C. Boelens (2005) Nuclear import of ${\alpha}$B-crystallin is phosphorylation-dependent and hampered by the myopathy-related mutant R120G. J. Biol. Chem. 280, 37139- 37148   DOI   ScienceOn
29 Sejerkilde, M., J. G. Sorensen and V. Loeschcke (2003) Effects of cold and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719-726   DOI   ScienceOn
30 Sakano, D., L. I. Bin, X. I. A. Qingyon, K. yamamoto, H. fujii, and A. S. O. Yoichi (2006) Genes encoding small heat shock proteins of the silkworm Bombyx mori. Bioscience, Biotechnology and biochemistry 70, 2443-2450   DOI   ScienceOn
31 Pratt, W. B. and D. O. Toft (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306-360   DOI   ScienceOn
32 Konstantopoulou, I. and Z. G. Scouras (1998) The heat shock gene Hsp 83 of Drosophila auraria: genomic organization, nucleotide sequences and long antiparallel coupled ORFs (LAC ORFs). J. Mol.Evol. 46, 334-343   DOI
33 Nover, L. (1991) (ed.) Heat Shock Response. Boca Raton, FL: CRC
34 Lindquist, S. (1986) The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191   DOI   ScienceOn
35 Deshaies, R. J., B. D. Koch and R. Schekman (1988) The role of stress proteins in membrane biogenesis. Trends Biochem. Sci. 13, 384-388   DOI   ScienceOn
36 Brugge, J. S., E. Erikson and R. L. Erikson (1981) The specific interaction of the rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25, 363-372   DOI   ScienceOn
37 Narberhaus, F. (2002) Á-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64-93   DOI
38 De Jong, W. W., J. A. M. Leunissen and C. E. M. Voorter (1993) Evolution of the a-Crystallin / Small Heat-Shock Protein Family. Mol. Biol. Evol. 10, 103-126
39 Kumar, S., K. Tamura and M. Nei (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150-163   DOI   ScienceOn
40 Ali, A., P.H Krone, D. S. Pearson and J. J. Heikkila (1996) Evaluation of stress inducible Hsp 90 gene expression as a potential molecular biomarker in Xenopus laevis. Cell Stress Chaperones 1, 62-69   DOI
41 Krishnaswamy, S., M. N. Narashimanna, S. K. Suryanarayana and S. Kumaraj (1977). Silkworm rearing; in Manual on sericulture Vol. 2., Mysore Publ., Central Silk Board
42 Yost, H. J. and Lindquist, S. (1986) RNA splicing is interrupted by heat shock protein and is rescued by heat shock protein synthesis. Cell 45, 185-193   DOI   ScienceOn
43 Nadeau, D., S. Corneu, I. Plante, G. Morrow and R.M. Tanguay (2001) Evaluation of HSP 70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaperones 6, 153-163   DOI
44 Lindquist, S. and E. A. Craig (1988). The heat-shock proteins. Annu Rev Genet. 22, 631-677   DOI   ScienceOn