• Title/Summary/Keyword: Heat shock protein 70(HSP70)

Search Result 205, Processing Time 0.026 seconds

Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction

  • Eltobshy, Somaia A.G.;Hussein, Abdelaziz M.;Elmileegy, Asaad A.;Askar, Mona H.;Khater, Yomna;Metias, Emile F.;Helal, Ghada M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.203-217
    • /
    • 2019
  • The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).

Structural resemblance of the DNAJA-family protein, Tid1, to the DNAJB-family Hsp40

  • Jang, Jinhwa;Lee, Sung-Hee;Kang, Dong-Hoon;Sim, Dae-Won;Ryu, Kyung-Suk;Jo, Ku-Sung;Lee, Jinhyuk;Ryu, Hyojung;Kim, Eun-Hee;Won, Hyung-Sik;Kim, Ji-Hun
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.488-493
    • /
    • 2022
  • The specific pair of heat shock protein 70 (Hsp70) and Hsp40 constitutes an essential molecular chaperone system involved in numerous cellular processes, including the proper folding/refolding and transport of proteins. Hsp40 family members are characterized by the presence of a conserved J-domain (JD) that functions as a co-chaperone of Hsp70. Tumorous imaginal disc 1 (Tid1) is a tumor suppressor protein belonging to the DNAJA3 subfamily of Hsp40 and functions as a co-chaperone of the mitochondrial Hsp70, mortalin. In this work, we performed nuclear magnetic resonance spectroscopy to determine the solution structure of JD and its interaction with the glycine/phenylalanine-rich region (GF-motif) of human Tid1. Notably, Tid1-JD, whose conformation was consistent with that of the DNAJB1 JD, appeared to stably interact with its subsequent GF-motif region. Collectively with our sequence analysis, the present results demonstrate that the functional and regulatory mode of Tid1 resembles that of the DNAJB1 subfamily members rather than DNAJA1 or DNAJA2 subfamily proteins. Therefore, it is suggested that an allosteric interaction between mortalin and Tid1 is involved in the mitochondrial Hsp70/Hsp40 chaperone system.

Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70

  • Jiang, Tao;Wang, Xingang;Wu, Weiwei;Zhang, Fan;Wu, Shifeng
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2016
  • Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.

SIRT1 Inhibitor Enhances Hsp90 Inhibitor-mediated Abrogation of Hsp90 Chaperone Function and Potentiates the Cytotoxicity of Hsp90 Inhibitor in Chemo-resistant Human Cancer Cells (SIRT1 inhibitor에 의한 Hsp90 inhibitor의 Hsp90 샤페론 기능 억제 및 항암제 내성세포의 Hsp90 inhibitor에 대한 세포독성 증강)

  • Moon, Hyun-Jung;Lee, Su-Hoon;Kim, Hak-Bong;Lee, Kyoung-A;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.826-834
    • /
    • 2016
  • The present investigation was undertaken to examine the effectiveness of the combination treatment of an Hsp90 inhibitor and a SIRT1 inhibitor on suppressing the growth of chemo-resistant human cancer cells. We showed that inhibition of SIRT1 effectively potentiated the cytotoxicity of 17-allylamino-17-demethoxygeldanamycin (17-AAG) and reversed Hsp90 inhibitor resistance in multidrug-resistant (MDR) human ovarian HeyA8-MDR cells. Amurensin G, a potent natural SIRT1 inhibitor, enhanced Hsp90 inhibitor-mediated abrogation of the Hsp90 chaperone function and accelerated degradation of mutated p53 (mut p53), an Hsp90 client protein, by up-regulation of ubiquitin ligase CHIP. Knock-down of CHIP significantly attenuated amurensin G-induced mut p53 degradation. Down-regulation of mut p53 reduced the expression of heat shock factor1 (HSF1)/heat shock proteins (Hsps), a major cause of Hsp90 inhibitor resistance, which led to sensitization of the MDR cells to the Hsp90 inhibitor by the SIRT1 inhibitor. Amurensin G potentiated cytotoxicity of the Hsp90 inhibitor in HeyA8-MDR cells through suppression of 17-AAG-induced Hsp70 and Hsp27 induction via down-regulation of mut p53/HSF1, and it caused activation of PARP and inhibition of Bcl-2. Our data suggests that SIRT1 inhibitors could be used to sensitize MDR cells to Hsp90 inhibitors, possibly through suppression of the mut p53/HSF1-dependent pathway, and a novel mut p53-directed action of SIRT1 inhibition could effectively prevent mut p53 accumulation in MDR cells.

Pulsed Electromagnetic Field and Pulsed Ultrasound Increases Chondrogenesis through HSP70 Overexpression in Rat Articular Cartilage (흰쥐의 관절연골에서 맥동전자장과 맥동초음파가 HSP70의 과발현을 통한 연골형성에 미치는 영향)

  • Koo, Hyun-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.1
    • /
    • pp.111-116
    • /
    • 2013
  • 연구목적: 본 연구는 흰쥐를 대상으로 정강뼈의 관절연골에 적용한 맥동전자장과 맥동초음파가 HSP70(Heat shock protein 70)의 발현을 통한 연골 형성에 미치는 영향을 알아보고자 실시하였다. 연구방법: 36마리의 200~250g의 Sprague-Dawley 흰쥐를 대조군, 맥동전자장 적용군, 맥동초음파 적용군으로 각 집단별로 12마리씩 무작위 배정하여 실험을 진행하였다. 맥동전자장은 27.12 MHz의 주파수, 5가우스의 강도, 450 W의 출력으로 10분간 적용하였고, 맥동초음파는 20%의 맥동비, 1MHz의 주파수, $1.5W/cm^2$의 강도로 10분간 적용하였다. 연구결과: 맥동전자장 적용군과 맥동초음파 적용군의 관절연골 조직에서 유의한 수준의 HSP70 발현량을 나타냈다. 또한 맥동전자장 적용군과 맥동초음파 적용군에서는 Akt, Erk1, CREB의 높은 활성도를 나타내었고, 맥동초음파 적용군에 비해서 맥동전자장 적용군의 더 높은 수준의 활성도를 보였다. 결론: 맥동전자장과 맥동초음파는 HSP70의 과발현을 유발하고, 이를 통해 연골형성을 증가시키는 것으로 나타나, 향후 관절연골의 손상에 대한 임상적 적용을 위한 추가적인 연구가 진행되어야 할 것으로 생각된다.

Effects of a mild heat treatment on mouse testicular gene expression and sperm quality

  • Zhao, Jun;Zhang, Ying;Hao, Linlin;Wang, Jia;Zhang, Jiabao;Liu, Songcai;Ren, Bingzhong
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.267-274
    • /
    • 2010
  • The decrease in sperm quality under heat stress causes a great loss in animal husbandry production. In order to reveal the mechanism underlying the sperm quality decrease caused by heat stress, we first established a mild heat-treated mouse model. Then, the sperm quality was identified. Further, the testicular proteome profile was mapped and compared with the control using 2D electrophoresis and mass spectrometry. Finally, the differential expressed proteins involved in the heat stress response were identified by real-time PCR and Western blotting. The results showed that heat stress caused a significant reduction in mouse sperm quality (P<0.05). Further, 52 protein spots on the 2D gel were found to differ between the heat-shocked tissues and the control. Of these spots, some repair proteins which might provide some explanation for the influence on sperm quality were found. We then focused on Bag-1, Hsp40, Hsp60 and Hsp70, which were found to be differently expressed after heat shock (P<0.05). Further analysis in this heat-shocked model suggests numerous potential mechanisms for heat shock-induced spermatogenic disorders.

Expression of Heat Shock Protein in Cytokine Stimulated PDL Cells and Inflamed Gingival Tissue (염증성 치은조직과 치주인대세포에서 Cytokine에 의해 유도되는 열충격단백 발현에 관한 연구)

  • Cho, In-Ho;Kim, Doek-Kyu;Kim, Eun-Cheol;You, Hyung-Keun;Shink, Hyung-Shin
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.103-120
    • /
    • 1998
  • Prokaryotic and eukaryotic cells respond to heat stress and other environmental abuses by synthesizing a small set of stress proteins and by inhibiting post-transcription synthesis of normal proteins. The purpose of the present study was to document the stress response produced by inflamed gingival tissue in vivo, and cytokine inducted human periodontal ligament cells. Human PDL cells were exposed to TNF-$\alpha$(1ng/ml), INF-$\gamma$(200 U/ml), LPS(100ug/ml), combination of cytokine, and SDS-PAGE gels running and Western blotting analysis was done. In vivo studies, the healthy gingival tissusse of a control group and inflamed gingival tissue of adult periodontitis were studied by immunohistochemistry and histology. The results were as follows 1. HSP 47 was distributed on basal layer in healthy gingiva, but stronger stained in basal, suprabasal, and spinous layer of inflamed gingiva. 2. HSP 47 was rare on endothelial cells and mononuclear cells in healthy gingiva, but stronger expressed in inflamed gingiva. 3. HSP 70 expression was rare on epihelium and inflammatory cells hi both healthy & inflamed gingiva. 4. HSP 70 was actively expressed on endothelial cells and inflammatory cells of capillary lumen in moderately & mild inflamend gingiva. 5. PDL cells showed low level of HSP 47 protein expression which was significantly induced by cytokine stimulation (LSP only and combination). 6. Maximum HSP 70 protein induction was seen with stimulation by a combination of the cytokine, Combination of TNF-$\alpha$, INF-$\gamma$, LPS have been shown to synergistically effects of HSP 70 expression. On the above findings, HSP Is influenced by cytokine and chronic inflammation in vivo, and may be involved in protection of tissue during periodontal inflammatiom.

  • PDF

Impaired Avoidance Learning and Increased hsp70 mRNA Expression in Pentylenetetrazol-treated Zebrafish

  • Kim, Yeon-Hwa;Lee, Yun-Kyoung;Lee, Han-Sol;Jung, Min-Whan;Lee, Chang-Joong
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.275-281
    • /
    • 2009
  • The effects of pentylenetetrazol (PTZ), a GABA receptor antagonist, were studied on passive avoidance learning and expression of heat shock protein 70 (hsp70), neuroglobin, and fatty acid binding protein-7 (fabp-7) genes. Zebrafish were trained to stay in a dark compartment to avoid a weight dropping in an acryl shuttle box with a central sliding door. In two training sessions of 2 h interval, each consisting of 3 trials, the crossing time was significantly increased from $43.2{\pm}14.4s$ to $149.3{\pm}38.5s$ in the first training session and remained $116.1{\pm}36.0s$ s in the first trial of the second training session in the control. In zebrafish treated with PTZ before the first training session, the crossing time was significantly increased neither in the first nor in the second training session. However, the increased crossing time was maintained in the second training session when 10 mM PTZ was treated three times for 10 min at 30 min intervals between the first and second training session. Quantitative real-time PCR showed that expression level of hsp70 mRNA increased two to eight fold over that of control in the brain at 0-24 h after termination of PTZ treatment. No change in expression of neuroglobin and fabp-7 mRNA was shown in PTZ-treated zebrafish. Our studies suggest that PTZ impairs learning ability in avoidance response and also modifies expression of genes related to the neuroprotection.

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening

  • Lee, Jee-Young;Jung, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1717-1722
    • /
    • 2008
  • The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.

흰쥐 적출대동맥의 수축력에 미치는 열과 Nacl의 영향

  • Park Tae Gyu;Kim Jong Il;Seong Yu Jin;Kim In Gyeom;Kim Jung Yeong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.11a
    • /
    • pp.86-91
    • /
    • 2003
  • In this study, in order to examine whether salt and heat shock stress would alter or not contraction and relaxation of isolated rat aorta. Under anesthesia with sodium pentobarbital(50 mg Kg$^{-1}$ i.p.), male Sprague Dawley rats weighing 300-330 g were subjected to 0, heat shock combined salt stress, where as the sham group was left at modified Krebs-bicarbonate solution. To measure contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And the strip was checked for expression of heat shock protein(Hsps) by means of western blotting. The combination group of heat and 50 mM NaCl group increased vascular contractility, and the heat and 150 mM NaCl group decreased vascular contractility for 5 hours, and then recovered for 8 hours compared to that of control. Expressin of Hsp 70 of vascular muscle of rat aorta more increased by combination of heat and NaCl treatment than those of single treatment of heat or NaCl treatment, and vascular Hsp 70 showed a little decrease at 8 hours compared at 5 hours. These result indicate that mixed environmental stress either increased or decreased in vascular contractility by combination of heat and NaCl concentration.

  • PDF