• Title/Summary/Keyword: Heat shock protein(HSP)

Search Result 385, Processing Time 0.03 seconds

Synthesis and thermotolerance of heat shock proteins in campylobacter jejuni (Campylobacter jejuni에서 고온충격 단백질의 합성과 내열성)

  • 김치경;김현옥;이길재
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 1991
  • The heat shock responses of Campylobacter jejuni were studied by examination of their survival rates and synthesis of heat shocd proteins. When C. jejuni cells were treated at the sublethal temperatures of 48.deg.C for 30 minutes, most of the cells maintained their viabilities and synthesized the heat shock proteins of 90, 73, and 66 kD in molecular weight. By the method of two-dimensional electrophoresis, the heat shock proteins of C. jejuni were identified to be Hsp90, Hsp73, and Hsp66. During the heat shock at 48.deg.C, the heat shock proteins were induced from about 5 minutes after the heat shock treatment. Their synthesis was continued upto 30 minutes, but remarkably retarded after 50 minutes. When C. jejune cells were heat shocked at 51.deg.C for 30 minutes, the survival rates of the cells were decreased by about $10^{3}$ fold and synthesis of heat shock proteins and normal proteins was also generally retarded. The cells exposed to 55.deg.C for 30 minutes died off by more than $10^{5}$ cells and the new protein synthesis was not observed. But when C. jejuni cells were heat-shocked at the sublethal temperature of 48.deg.C for 15 to 20 minutes and then were exposed at the lethal temperature of 55.deg.C for 30 minutes, their viabilities were higher than those exposed at 55.deg.C for 30 minutes without pre-heat shock at 48.deg.C. Therefore, the heat shock proteins synthesized at the sublethal temperature of 48.deg.C in C. jejuni were thought to be responsible for thermotolerance. However, when C. jejuni cells heat-shocked at various ranges of sublethal and lethal temperatures were placed back to the optimum temperature of 42.deg.C, the multiplication patterns of the cells pretreated at different temperatures were not much different each other.

  • PDF

Induced expression of three heat shock proteins mediated by thermal stress in Heortia vitessoides (Lepidoptera: Crambidae)

  • CHENG, Jie;WANG, Chun-Yan;LYU, Zi-Hao;LIN, Tong
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.416-428
    • /
    • 2018
  • To gain an insight into the function of heat shock proteins (HSPs) in insects during thermal stress, three HSP cDNAs were identified in the transcriptome of adult Heortia vitessoides, one of the most destructive defoliating pests in Aquilaria sinensis (Loureiro) Sprenger forests. The open reading frames of HvHsp60, HvHsp70, and HvHsp90 were 1,719, 2,070, and 2,151 bp in length, respectively, and encoded proteins with molecular weights of 61.05, 75.02, and 82.23 kDa, respectively. Sequence analysis revealed that all three HSPs were highly conserved in structure. Regarding the stage-specific expression profiles, HvHsp60, HvHsp70, and HvHsp90 mRNAs were detected in all developmental stages. Regarding the tissue-specific expression profiles, the expression levels of the three HSP genes were different in various larval and adult tissues. Moreover, the expression patterns of heat-stressed larvae, pupae, and adults indicated that HvHsp60, HvHsp70, and HvHsp90 were heat-inducible. In particular, HvHsp60 transcripts increased dramatically in larvae and pupae that were heat-stressed at $40^{\circ}C$ and were upregulated in adults that were heat-stressed at $35^{\circ}C$ and $40^{\circ}C$. The expression of HvHsp70 significantly increased in all of the three different developmental stages at $35^{\circ}C$, $40^{\circ}C$, and $45^{\circ}C$. The expression of HvHsp90 obviously increased at $30^{\circ}C$, $35^{\circ}C$, and $40^{\circ}C$ in larvae and could be induced at $35^{\circ}C$ in pupae and adults. The results suggest that HSP60, HSP70, and HSP90 play a major role in protecting H. vitessoides against high-temperature stress.

Inhibitory Effects of Tannic Acid on the Skin Toxicity and Heat Shock Protein Induction by UVB Irradiation in Hairless Mouse (자외선 B 파로 유도된 Hairless Mouse에서 타닌의 피부 독성 억제효과 및 Heat Shock Protein 70의 생성억제 효과)

  • 이세윤;이민경;장동덕;안령미;안형수
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.79-86
    • /
    • 1997
  • Inhibitory effects of tannic acid on skin toxicity and heat shock protein induced by UVB were investigated. Tannic acid was administered either topically or orally for 3 days to hairless mice, which were previously irradiated with UVB. UVB was found to cause skin erythema . However, the skin erythema was decreased when tannic acid was administered either topically or orally. The heat shock proteins, Hsp-78 kDa and 70 kDa, were induced by UVB irradiation, but the induction was decreased by treatment of tannic acid in both topically and orally administered groups. The hsp induction was more prominent in orally administered groups than in topically administerd groups. However, the difference between two groups was not statistically significant. The route of administrations, topical and oral, does not affect the activity of tannic acid. In the skin tissue observation, tannic acid regenerated the epithelial cells with 7-9 cell layers which were injured by UVB. In conclusion, tannic acid has an ability to protect against UVB irradiation and regenerate the skin.

  • PDF

Effects of Taurine Supplementation on Heat Shock Protein 70 and In Vitro Protein Syntheses in Liver of Broiler Chicks under Chronic Heat Stress (고온 스트레스 하에 타우린 첨가가 육계 간의 Heat Shock Protein 70 및 In Vitro의 단백질 합성에 미치는 영향)

  • Cho, Eun So Ri;Park, Garng Hee;Shim, Kwan Seob
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.213-218
    • /
    • 2016
  • This study was conducted to investigate the effect of taurine supplementation on heat shock protein 70 and in vitro protein turnover in broiler chicks under chronic heat stress. Chicks were allocated into 3 groups of 10 birds per group; the control group was maintained at a temperature of $24^{\circ}C$ without taurine (CO group), the heat-stressed group maintained at a temperature of $34^{\circ}C$ without taurine (HO group), and heat-stressed group maintained at a temperature of $34^{\circ}C$ with taurine (HT group). The final body and liver weights of broilers in the HO and HT groups were significantly lower than those of broilers in the CO group (P<0.05). However, these parameters of the broilers in the HT group were significantly higher than those of broilers in the HO group (P<0.05). The heat shock protein 70 (hsp70) concentration in the liver of broilers in the HO group was significantly higher than that of broilers in the CO and HT groups, but the hsp70 concentration in the liver of broilers in the HT group was not different from that of broilers in the CO group. Liver homogenates of 21 day-old broilers were incubated at temperatures of $37^{\circ}C$ and $45^{\circ}C$ to prove the effect of high temperature and taurine on total protein syntheses. Neither high temperature nor taurine supplementation affected protein syntheses in liver homogenates of the broilers. However, the more the temperature increased, the more the degradation rates of cytoplasmic protein in liver homogenates increased; however, taurine supplementation had no effects on the protein syntheses in the liver of the broiler. It is possible that taurine indirectly affected protein turnover via various physiological mechanisms.

Expression and Accumulation of LMW HSPs under Various Heat Shock Conditions (다양한 열처리 조건에서 LMW HSPs의 발현 및 축적량 조사)

  • Kim, Ki-Yong;Jang, Yo-Soon;Lee, Byung-Hyun;Jo, Jinki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.303-310
    • /
    • 1998
  • We studied expression patterns of thermotolerance gene (BcHSP17.6) in cabbages which was isolated from Chinese cabbage and we will attempt transformation of forage crops with the gene in order to increase thermotolerance of forage crops. Antiserum against a BcHSP17.6 protein was reacted with its antigen. With this antiserum, the accumulation of the 15- to 18-kD LMW HSPs under various heat shock (HS) conditions was quantified. The LMW HSPs began to be detectable at $35^{\circ}C$, and after 4 hours at $40^{\circ}C$ they were accumulated to a maximum level of 1.56 micrograms per 100 micrograms of total proteins in cabbage leaves and remained almost unchanged up to 24 hours after HS. Accumulation of the HSPs was reduced at temperatures higher than $40^{\circ}C$. We conclude that accumulation of these LMW HSPs are necessary for Chinese cabbages to survive at an otherwise lethal temperature.

  • PDF

Biochemical Analysis of a Cytosolic Small Heat Shock Protein, NtHSP18.3, from Nicotiana tabacum

  • Yu, Ji Hee;Kim, Keun Pill;Park, Soo Min;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.328-333
    • /
    • 2005
  • Small heat shock proteins (sHSPs) are widely distributed, and their function and diversity of structure have been much studied in the field of molecular chaperones. In plants, which frequently have to cope with hostile environments, sHSPs are much more abundant and diverse than in other forms of life. In response to high temperature stress, sHSPs of more than twenty kinds can make up more than 1% of soluble plant proteins. We isolated a genomic clone, NtHSP18.3, from Nicotiana tabacum that encodes the complete open reading frame of a cytosolic class I small heat shock protein. To investigate the function of NtHSP18.3 in vitro, it was overproduced in Escherichia coli and purified. The purified NtHSP18.3 had typical molecular chaperone activity as it protected citrate synthase and luciferase from high temperature-induced aggregation. When E. coli celluar proteins were incubated with NtHSP18.3, a large proportion of the proteins remained soluble at temperatures as high as $70^{\circ}C$. Native gel analysis suggested that NtHSP18.3 is a dodecameric oligomer as the form present and showing molecular chaperone activity at the condition tested. Binding of bis-ANS to the oligomers of NtHSP18.3 indicated that exposure of their hydrophobic surfaces increased as the temperature was raised. Taken together, our data suggested that NtHSP18.3 is a molecular chaperone that functions as a dodecameric complex and possibly in a temperature-induced manner.

Effects of DBD-bio-plasma on the HSP70 of Fibroblasts: A New Approach on Change of Molecular Level by Heat Shock in the Cell (Fibroblasts 세포주의 HSP70에 대한 DBD-bio-plasma의 effects: Cell에서 Heat Shock에 의한 Molecular Level 변화로의 새로운 접근법)

  • Kim, Kyoung-Yeon;Yi, Junyeong;Nam, Min-Kyung;Choi, Eun Ha;Rhim, Hyangshuk
    • KSBB Journal
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Plasma is an ionized gas mixture, consisting of neutral particles, positive ions, negative electrons, electronically excited atoms and molecules, radicals, UV photons, and various reactive species. Also, plasma has unique physical properties distinct from gases, liquids, and solids. Until now, non-thermal plasmas have been widely utilized in bio-medical applications (called bio-plasma) and have been developed for the plasma-related devices that are used in the medical field. Although numerous bio-plasma studies have been performed in biomedicine, there is no confirmation of the nonthermal effect induced by bio-plasma. Standardization of the biological application of plasma has not been evaluated at the molecular level in living cells. In this context, we investigated the biological effect of bio-plasma on living cells. Hence, we treated the fibroblasts with Dielectric Bauvier Discharge bio-plasma (DBD), and assessed the characteristic change at the molecular level, one of the typical cellular responses. Heat shock protein 70 (HSP70) regulates its own protein level in response to stimuli. HSP70 responds to heat shock by increasing its own expression at the molecular level in cells. Hence, we confirmed the level of HSP70 after treatment of mouse embryonic fibroblasts (MEFs) with DBD. Interestingly, DBD-plasma induced cell death, but there was no difference in the level of HSP70, which is induced by heat shock stimuli, in DBD-treated MEFs. Our data provide the basic information on the interaction between MEFs and DBD, and can help to design a molecular approach in this field.

Protective Efficacy of Recombinant Proteins Adenylate Kinase, Nucleoside Diphosphate Kinase, and Heat-Shock Protein 70 against Mycobacterium tuberculosis Infection in Mice (유전자 재조합 단백질 Adenylate Kinase, Nucleoside Diphosphate Kinase와 Heat-Shock Protein 70의 결핵균에 대한 방어면역효능 분석)

  • Lee, Seung-Heon;Lee, Eun-Gae;Kim, Su-Yeon;Cho, Sang-Nae;Park, Young-Kil;Bai, Gill-Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • Background : Priming and boosting vaccination strategy has been widely explored for new vaccine development against tuberculosis. As an effort to identify other vaccine candidates, this study was initiated to evaluate protective efficacy of adenylate kinase (AK), nucleoside diphosphate kinase (NdK), and heat shock protein 70 (Hsp70) of Mycobacterium tuberculosis. Method : M. tuberculosis genes encoding AK, NdK, and Hsp70 proteins were amplified by PCR and cloned into E. coli expression vector, pQE30. Recombinant AK, NdK, and Hsp70 was purified through Ni-NTA resin. To evaluate immune responses, we performed enzyme-linked immunosorbent assay (ELISA) for IgG isotype and $IFN-{\gamma}$ after mice were immunized subcutaneously with recombinant proteins delivered in dimethyl dioctadecylammonium bromide (DDA). Immunized- and control groups were challenged by aerosol with M. tuberculosis. The spleens and lungs of mice were removed aseptically and cultured for CFU of M. tuberculosis. Result : Vaccination with recombinant proteins AK, NdK, and Hsp70 delivered in DDA elicited significant level of antibody and $IFN-{\gamma}$ responses to corresponding antigens but no protective immunity comparable to that achieved with Mycobacterium bovis BCG. Conclusion : Recombinant proteins AK, NdK, and Hsp70 do not effectively control growth of M. tuberculosis in mice when immunized with DDA as an adjuvant.

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.9 no.2
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Cloning and Characterization of dnaK Heat Shock Protein Gene in a Halotolerant Cyanobacterium (내염성 cyanobacteria로 부터 danK heat shock protein 유전자의 cloning 및 특성 해명)

  • ;;;Teruhiro Takabe
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.464-469
    • /
    • 2001
  • A gene, dnaK2, encoding a distinct member of the HSP70 family of molecular chaperones is isolated from the halotolerant cyanobactrium Aphanothece halophytica. The dnak2 gene encodes a molecular wight of 68 kDa polypeptide with predicted 616 amino acid residues. The DnaK2 protein has a structural characteristic of bacterial DnaK homologues and shows high similarity to other HSP70/Dank proteins. The danK2 transcripts are hardly detectable at 28$^{\circ}C$ and strongly induced upon heat stress. It is also found that dnaK2 transcript is increased by high-salinity stress even in the absence of heat stress. These results suggest that the DnaK2 protein plays an important role in protecting A. halophytica against damage caused by salt stress at well as heat stress.

  • PDF