• Title/Summary/Keyword: Heat sensitivity

Search Result 591, Processing Time 0.029 seconds

Trigeminal Neuralgia like Pain Behavior Following Compression of the Rat Trigeminal Ganglion

  • Yang, Gwi-Y.;Mun, Jun-H.;Park, Yoon-Y.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.34 no.3
    • /
    • pp.157-164
    • /
    • 2009
  • We recently described a novel animal model of trigeminal neuropathic pain following compression of the trigeminal ganglion (Ahn et al., 2009). In our present study, we adapted this model using male Sprague-Dawley rats weighing between 250-260 g and then analyzed the behavioral responses of these animals following modified chronic compression of the trigeminal ganglion. Under anesthesia, the rats were mounted onto a stereotaxic frame and a 4% agar solution ($10{\mu}L$) was injected in each case on the dorsal surface of the trigeminal ganglion to achieve compression without causing injury. In the control group, the rats received a sham operation without agar injection. Air-puff, acetone, and heat tests were performed at 3 days before and at 3, 7, 10, 14, 17, 21, 24, 30, 40, 55, and 70 days after surgery. Compression of the trigeminal ganglion produced nociceptive behavior in the trigeminal territory. Mechanical allodynia was established within 3 days and recovered to preoperative levels at approximately 60 days following compression. Mechanical hyperalgesia was also observed at 7 days after compression and persisted until the postoperative day 40. Cold hypersensitivity was established within 3 days after compression and lasted beyond postoperative day 55. In contrast, compression of the trigeminal ganglion did not produce any significant thermal hypersensitivity when compared with the sham operated group. These findings suggest that compression of the trigeminal ganglion without any injury produces prolonged nociceptive behavior and that our rat model is a useful system for further analysis of trigeminal neuralgia.

Research on a Stability of Feedwater Control System after Stretched Power Uprate and Replacement Steam Generator for Ulchin Units 1&2 (울진1,2호기 출력최적화 및 증기발생기 교체가 주급수 제어계통 안정도에 미치는 영향연구)

  • Yoon, Duk-Joo;Kim, In-Hwan;Kim, Sang-Yeol
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.14-20
    • /
    • 2012
  • Full load rejection capability of nuclear power plant depends primarily on steam dump capacity (SDCAP) and steam generator level control capability. Recently, Ulchin Units 1&2 have performed stretched power uprate (SPU) and replacement steam generator (RSG) projects, which increase the power by 4.5 percent. They change major design or operating parameters and especially reduces steam dump capacity at full power due to increase of the steam flow. The reduction of SDC after SPU results in degradation of heat removal capability in full load rejection transients. Therefore, we should perform evaluation to determine whether reactor trips occur in large load rejection transients. Uchin Units 1&2 have experienced full load rejection (FLR) three times from 2004 to 2010. Operating data from the plant occurrence of FLR at Ulchin Units 1&2 showed that steam generator (SG) level transients were limiting in point of reactor trip. However the plant had never reached reactor trip in the FLR and successfully continued in house load operation. The parameters and setpoints for the SG will be changed if the SG is replaced. Therefore, we evaluated the appropriateness of steam dump, main feedwater and steam generator water level control system preventing the plant from reactor trip in case of FLR by the parameter sensitivity study whether SG water level operated smoothly after SPU and RSG projects.

The Application of Satellite Data to Land Surface Process Parameterization in ARPS Model (ARPS 모형 지면 과정 모수화에 위성 자료의 응용)

  • Ha, Kyung-Ja;Suh, Ae-Sook;Chung, Hyo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.99-108
    • /
    • 1998
  • In order to represent the surface characteristics in local meteorological model, soil type, vegetation index, surface roughness length, surface albedo and leaf area index should be prescribed on the surface process parameterization. In this study, the $1^{\circ}/1^{\circ}leaf$ area index, surface roughness length, and snow free surface albedo and fine mesh NDVI with seasonal variation derived from the satellite observation were applied to the land surface process parameterization. From comparison between with and without satellite data in the interactions between biosphere and atmosphere, land and atmosphere, the sensitivity of the simulated heat, energy and water vapor fluxes, ground temperature, wind, canopy water content, specific humidity, and precipitation fields were investigated.

Development of a thermal-hydraulic analysis code for once-through steam generators using straight tubes for SMRs (일체형 원자로용 관류식 직관형 증기발생기 열수력 해석 코드 개발)

  • Park, Youngjae;Kim, Iljin;Kang, Kyungjun;Kang, Hanok;Kim, Youngin;Kim, Hyungdae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • A thermal-hydraulic design and performance analysis computer code for a once-through steam generator using straight tubes is developed. To benchmark the developed physical models and computer code, an once-through steam generator developed by other designer is simulated and the calculated results are compared with the design data. Also, the same steam generator is analyzed with the best-estimate thermal-hydraulic system code, MARS, for the code-to-code validation. The overall characteristics of heat transfer area, pressure and temperature distributions calculated by the developed code show general agreements with the published design data as well as the analysis results of MARS. It is demonstrated that the developed code can be utilized for diverse purposes, such as, sensitivity analyses and optimum thermal design of a once-through steam generator.

Development of ELISA for Brucella abortus RB51 II. Purification of 8kDa antigen and development of ELISA using its antigen of Brucella abortus RB51 (부루세라 RB51의 ELISA 진단법 개발 II. Brucella abortus RB51균의 8kDa 항원 정제 및 ELISA 진단법 개발)

  • Her, Moon;Cho, Dong-hee;Jung, Byeong-yeal;Cho, Seong-kun;Jung, Suk-chan;Kim, Ok-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • A procedure for extraction and purification of 8 kDa antigen of Brucella abortus RB51 was developed. Bacteria heat inactivated at $60^{\circ}C$, 30 min was extracted by 1% sarcosine and followed by fluid pressure liquid gel filtration chromatography of 2 series, Superose 12 HR 10/30 and Sephacryl S-100. There was produced $71.46{\mu}g/g$(wet) of 8 kDa antigen, and it resisted 1% trypsin, solved 1% triton X-100 higher than distilled water and inactivated 0.1% proteinase K. These results show that 8 kDa antigen may be a lipoprotein existed cell surface of B. abortus RB51. Also, we developed ELISA using purified 8 kDa surface antigen of Brucella abortus RB51 strain, its specificity and sensitivity was 95.0%, 98.6%, respectively. As compared with dot-blot assay using whole cell and ELISA using 8 kDa antigen, its correlation was 93.5%.

  • PDF

Study on the Temperature Separation Phenomenon in a Vortex Chamber (와류실의 온도 분리 현상에 대한 연구)

  • Ye, A Ran;Zhang, Guang;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.731-737
    • /
    • 2014
  • A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

Antimicrobial Effects of Propolis against Oral Microorganisms (프로폴리스의 구강구취균에 대한 항균성)

  • Kim, Sang-A;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.370-375
    • /
    • 2013
  • Propolis is a resinous mixture found in the tree buds, sap flows, and other botanical sources, which is used by honey bees in the construction of their hives. Antimicrobial effects of propolis were evaluated against Streptococcus mutans KCTC 3065, S. sobrinus KCTC 3308, S. sobrinus KCTC 5134, and Porphyromonas gingivalis KCTC 5352 by an agar diffusion assay. Sensitivity of these microorganisms to propolis was evaluated in broth containing different concentrations of propolis at $37^{\circ}C$, followed by observation using transmission electron microscopy (TEM). Propolis inhibited all oral microorganisms tested at the minimum inhibitory concentration (MIC) of $0.14mg/{\mu}L$ in the agar diffusion assay. Treatment with 0.06 and $0.22mg/{\mu}L$ of propolis had a bactericidal effect in a concentration- and treatment time-dependent manner against the tested microorganisms. TEM of propolis-treated S. mutans KCTC 3065 and P. gingivalis KCTC 5352 revealed structural damage of the cell membrane. The activity of propolis was affected by heat and pH treatment. The results indicate that propolis shows antibacterial activity against oral microorganisms and that it has potential for future applications in the food industry.

Effects of Drought Stress on Photosynthetic Capacity and Photosystem II Activity in Oplopanax elatus (수분스트레스가 땃두릅나무의 광합성 능력 및 광계 II의 활성에 미치는 영향)

  • Lee, Kyeong Cheol;Kim, Sun Hee;Park, Wan Geun;Kim, Young Seol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This study was performed to investigate the physiological responses of Oplopanax elatus by water condition. Drought stress was induced by withholding water for 26 days. The results show that $P_{N\;max}$, SPAD, gs, E and Ci were significantly decreased with decreasing of soil moisture contents. However, AQY and WUE were decreased slightly only at 26 day. This implies that photosynthetic rate is reduced due to an inability to regulate water and $CO_2$ exchange through the stomatal. According to JIP analysis, ${\Phi}_{PO}$, ${\Psi}_O$, ${\Phi}_{EO}$ and $PI_{ABS}$ were dramatically decreased at 21 day and 26 day, which reflects the relative reduction state of the photosystem II. On the other hand, the relative activities per reaction center such as ABS/RC, TRo/RC were significantly increased at 26 day. Particularly, Dio/RC and DIo/CS increased substantially under drought stress, indicating that excessive energy was consumed by heat dissipation. These results of chlorophyll a fluorescence show that the sensitivity changes photosystem II activity. Thus, according to the results, O. elatus was exhibited a strong reduction of photosynthetic activity to approximately 10% soil moisture contents, and JIP parameters could be useful indicator to monitor the physiological states of O. elatus under drought stress.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Study on Influence of Air Flow of Ceiling Type Air Conditioner on Fire Detector Response (천장형에어컨 기류가 화재감지기 작동에 미치는 영향 분석)

  • Choi, Moon-Soo;Lee, Keun-Oh
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.40-45
    • /
    • 2018
  • This paper is an analysis of the influence of ceiling air conditioner airflow on fire detector response. In order to analyze the response characteristics of fire detector while forming air flow of a ceiling-type air conditioner, fire tests were carried out in accordance with ISO standard. This experiment was carried out in a fire test site of 10 m (width) ${\times}$ 7 m (length) ${\times}$ 4 m (height). As a result of the experiment, the response of fire detector shows a normal pattern that is delayed as the distance from the fire source is increased in the absence of the air conditioner, but it is confirmed that the pattern is not maintained in the strong air flow. When the air flow of air conditioner was strong, the response time was increased by 121% in the smoke detector and by 39% in the heat detector. In the case of ceiling type air conditioners, it is considered that the number of fire detectors should be increased, or a detector with high sensitivity should be installed for early detection of fire.