• Title/Summary/Keyword: Heat resistant material

Search Result 144, Processing Time 0.033 seconds

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Experimental Study on Fire Resistant Capacity and Thermal Conduction of Construction Material Using the Circulation Resources (폐콘크리트 순환자원을 이용한 건설재료의 화재내력 및 단열성에 관한 실험적 연구)

  • Choi, Jea-Nam;Hong, Se-Hwa;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.121-128
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. In addition, thermal conduction test was tested in order to find out concrete insulation. According to this test, when concrete was tested by fire resistance, it using the circulation aggregate was same resulted by concrete using the natural aggregate. also, recycle powder was not effecting insulation performance. but it is fit to standard on concrete insulation of building law.

The Effect of Annealing on Corrosion Behavior of CoCrTa/CrNi Magnetic Recording Media (CoCrTa/CrNi 자기기록매체의 열처리에 따른 부식거동 변화)

  • 우준형;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.210-216
    • /
    • 1999
  • The objective of this paper is to investigate corrosion behaviors of CoCrTa/CrNi thin film and post heat-treatment effect. An electron beam evaporator was used for films deposition. After evaporation, post heat-treatment was carried out under $5.0{\times}10^3$ Torr vacuum condition. Annealing temperature and time were 400 $^{\circ}C$ and 30 min, respectively. To understand the effect of annealing on corrosion behavior of CoCrTa/CrNi, potentiodynamic polarization technique and accelerated corrosion chamber test were undertaken. Corrosion potential is higher for the annealed samples (CoCrTa 400$\AA$/CrNi 1000$\AA$) than for as-deposited one. This is attributed to an enrichment of Cr in the surface layer of the thinfilm resulting in a more corrosion resistant material.

  • PDF

A CASE STUDY ON THE EFFECT OF NITRIDING FOR CHROME-PLATING LOSS OF SMALL ARMS BARREL (소구경화기 총열의 크롬도금 손실방지를 위한 질화 영향 사례연구)

  • Shin, JW;Shin, TS;Choi, SY;Chung, SH;Kim, BK;Kwon, HR
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.327-333
    • /
    • 2017
  • Purpose: The purpose of this study is to research to protect to loss of chrome-plating of small arms barrel on high temperature in order to extend its life expectency. Methods: The reason why chrome-plating dropped out is main material is weak from heat. Therfore, to make barrel of small arms have higher heat-resistant property, nitriding for barrel before chrome-plating is needed and test of that barrel was handled to improve it. Results: Nitriding before chrome-plating is useful to protect to chrome-plating loss on high temperature. Conclusion: To protect loss of chome-plating of small arms barrel during on firing, pre-nitriding on barrel is effective finally it leads to extend to barrel's life expectency.

Advanced Indentation Studies on the Effects of Hydrogen Attack on Tensile Property Degradation of Heat-Resistant Steel Heat-Affected Zones

  • Choi, Yeol;Jang, Jae-il;Lee, Yun-Hee;Kwon, Dongil;Kim, Jeong-Tae
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.266-271
    • /
    • 2003
  • Safety diagnosis of various structural components and facilities is indispensable for preventing catastrophic failure of material by time-dependent and environment accelerating degradation. Also, this diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive procedure and complex procedure of specimen sampling. So, a non-destructive and simple mechanical testing method using small specimen is needed. Therefore, an advanced indentation technique was developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. In this paper, we characterized the tensile properties including yield and tensile strengths of the V-modified Cr-Mo steels in petro-chemical and thermo-electrical plants. And also, the effects of hydrogen-assisted degradation of the V-modified Cr-Mo steels were analyzed in terms of work-hardening index and yield ratio.

Anti-microbial Finishing of Polyester Fibers using Ciprofloxacin Antibiotics (Ciprofloxacin을 이용한 폴리에스테르 섬유의 항미생물 가공)

  • Jeong, Yong-Sik;Jeong, Min-Ho;Jang, Hyeong-Gwan;Cha, Se-Yeon;Im, Dae-Yeong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.19-21
    • /
    • 2008
  • The quinolone antibiotics Ciprofloxacin shows broad antimicrobial spectrum, heat stability, limited water solubility, and similar structure and size to disperse dyes. The object of this study is to develop the infection-resistant medical extile material by applying Ciprofloxacin to a series of polyester materials such as PET, PDO, PLA, and PGA. All the Ciprofloxacin compound polyester materials demonstrated the superior antimicrobial activity to the organisms S. aureus and E. coli.

  • PDF

A Thermal Stress Analysis for Suggested Shape of Al Hybrid Brake Disc (제안된 알루미늄 복합체 제동 디스크 형상의 열응력 해석)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.283-288
    • /
    • 2011
  • The high heat resistant material for brake disc is required for higher speed trains. Although Aluminum is very expensive, it which has high thermal conductivity and low density has been adapted to high performance light-weight brake disc. In this study, we carry out the thermal stress analysis for suggested shape of Al hybrid brake disc which was designed to meet the optimal point between a performance and economic side. And we compare the results from the analysis to results of conventional disc at the same braking speed. The result show that the temperature on braking surface of Al hybrid disc is lower than the temperature on conventional disc surface, whereas the maximum thermal stress is larger than stress on conventional disc.

  • PDF

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Lee, Jong Seong;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.

Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk (관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구)

  • Lee, Jong Seong;Kang, Bu Byoung;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.