• 제목/요약/키워드: Heat release ratio

검색결과 189건 처리시간 0.026초

모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구 (LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor)

  • 황철홍;이현용;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구 (LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor)

  • 황철홍;김세원;이창언
    • 한국연소학회지
    • /
    • 제11권4호
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석 (Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects)

  • 최효상;이창진;강상훈
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.60-67
    • /
    • 2019
  • 하이브리드로켓의 저주파수 연소불안정(LFI) 특성을 이해하기 위해, 주연소실의 연소 당량비 변화가 500 Hz대역의 압력 및 열방출 진동의 위상변화에 미치는 영향에 대해 직접수치해석을 수행하였다. 주연소실의 당량비 변화는 후연소실로 유입되는 연소가스의 온도 및 조성 변화로 모사하였다. 수치해석 결과, 후향 계단 하류에 와류 생성과 함께 추가적인 연소가 나타나며, 와류가 이동함에 따라 연소 압력 및 반응률의 진동이 관찰되었다. 또한, 유입유동의 온도가 변화하면 압력파의 전파속도도 함께 변화하므로 압력 및 반응률 진동 사이의 위상차가 천이하게 됨을 확인하였다.

모형연소기에서 연료-공기의 혼합정도 및 당량비가 NOx 배출과 열 방출량에 미치는 영향에 대한 연구 (Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor)

  • 조봉국;최도욱;김규보;장영준;송주헌;전충환
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.658-665
    • /
    • 2009
  • Lean premixed combustors are used for significant NOx reduction which one of issues in current gas turbine combustor. This study was investigated to estimate the effects of the unmixedness of fuel-air, equivalence ratio on the instability mechanism, NOx emission and combustion oscillation in a lean premixed combustor. The experiments were conducted in a dump combustor at atmospheric pressure conditions using methane as fuel. The swirler angle was $45^{\circ}$, the degrees of fuel-air mixing were 0, 50 and 100 and inlet temperature was 650K. The equivalence ratio was ranging from 0.5 to 0.8. This paper shows that NOx emission was increased when the degree of fuel-air mixing is increased in same equivalence ratio and when equivalence ratio is increased. And the range of the combustion instability was enlarged as a function of increasing of the degree of fuel-air mixing.

연료에 따른 층류 예혼합화염의 CH* Chemiluminescence 신호특성 변화 (The Dependency of CH* Chemiluminescence of a Laminar Premixed Flame on Fuel Types)

  • 이원남;강석민
    • 한국연소학회지
    • /
    • 제13권2호
    • /
    • pp.14-22
    • /
    • 2008
  • The CH* chemiluminescence of premixed flames and their dependency on fuel types has been experimentally investigated on laminar methane and propane premixed flames. The measured chemiluminescence intensities are observed linearly proportional to the fuel flow rate, which could be interpreted as the CH* chemiluminescence signal is linearly proportional to the heat release rate under fuel lean conditions. The effect of equivalence ratio could be expressed by an exponential function as ${I_{CH*}}^{\propto}\;a_1\;{\exp}(b_1{\Phi})$, where $a_1\;=\;0.00054$ and $b_1\;=\;4.60$ for methane and $a_1\;=\;0.0056$ and $b_1\;=\;5.02$ for propane. Oscillating flames showed the temporal fluctuation of chemiluminescence intensity: however, the time averaged values are virtually identical to those of quiescent flames under the same fuel flow rate and equivalence ratio conditions. This observation suggests that there is no significant flame stretch effect on chemiluminescence intensity, in average values.

  • PDF

디젤기관에 있어서 흡기습도 변화가 연소 특성과 배기배출물 특성에 미치는 영향 (Effects of Suction Air Humidity on the Combustion and Exhaust Emissions Characteristics in Diesel Engine)

  • 임재근;김동호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.421-426
    • /
    • 2000
  • A study on the combustion and exhaust emissions characteristics of diesel engine with various suction air humidity is performed experimentally. In this paper, suction air humidity is changed from RH 50% to RH 90%, the experiments are performed at engine speed 1800rpm, and main measured parameters are cylinder pressure, fuel consumption rate, CO, HC, NOx and Soot emissions etc. Increase of suction air humidity from RH 50% to RH 90% does not effect specific fuel consumption, decreases maximum pressure in cylinder, ratio of maximum pressure rise and net heat release, and delays ignition timing. Also, that increases CO and HC emissions, decreases NOx emissions, but does not constant in changing tendency on emission.

  • PDF

대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (II) - 연소 분석 - (Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (II) - Combustion Analysis -)

  • 권순태;박찬준;엄인용
    • 대한기계학회논문집B
    • /
    • 제37권8호
    • /
    • pp.743-752
    • /
    • 2013
  • 본 논문은 대형 상용기관을 모사한 정적연소실에서 매립지 가스의 연소 특성에 대한 복수의 논문 중 두 번째로, 연소압력 측정을 기반으로 연소과정을 해석하였다. 해석 결과 연소에 유리한 조건일수록 두 개의 압력 정점이 존재하며, 이는 연소에 의한 열발생과 열전달에 의한 냉각효과의 상호 작용이며 두 정점의 크기는 미연가스 분율에 따라 달라진다. 또한 연소과정 중 열발생에는 4개의 주요 변곡점이 발생하고, 이는 점화위치로부터 화염전파에 따른 전열 면적 변화과정이 주원인이며 연소에 불리한 조건일수록 변곡점은 증가하고 열발생은 복잡한 형태를 지니는데, 이는 연소기간 연장이 주원인이다. 결론적으로 점화위치와 관련된 화염전파 과정 및 전열 면적의 변화과정 그리고 대형 연소실에 의한 연소기간 연장의 효과가 상호 복잡하게 작용하면서 매우 특이한 형태의 열발생 곡선이 생성된다.

건축물 외벽화재시 Flame Trajectory 추정을 위한 실험적 연구 (Experimental Study on Flame Trajectory in Building External Walls Fire)

  • 신이철;박계원;정재군
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.79-80
    • /
    • 2016
  • In the event of a fire on the outer walls of an architectural structure, through real scale experiments with the purpose of estimating the Flame Trajectory, the behavior and risks of expanded combustion to an upper architectural compartment of the Fire Plume Ejected from an Opening according to changes in the aspect ratio of the opening were examined. The results showed that the more the heat release rate of the fire source increased, the heat capacity of the Fire Plume Ejected from the Opening also increased, and for the case of heptane when compared with methanol or ethanol, the results showed a trend for a significant amount of unburned gas to remain. The results also showed that the larger the aspect ratio was, the more likely it was for the Flame Trajectory to approach the outer walls and rise up. In each of the experiment conditions, as the flame rose from the lower part of the wall to the upper part of the wall, a steady decrease was shown for the temperature distribution. Also by quantitatively analyzing the amount of unburned gas that remained, a method to estimate the temperature of the Fire Plume Ejected from an Opening for a traverse opening was implemented.

  • PDF

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.

목분-고밀도폴리에틸렌 복합체의 연소성 및 열적특성 (Combustion Characteristics and Thermal Properties for Wood Flour-High Density Polyethylene Composites)

  • 신백우;정국삼
    • 한국화재소방학회논문지
    • /
    • 제26권1호
    • /
    • pp.89-95
    • /
    • 2012
  • 본 연구에서는 목분-HDPE 복합체를 모듈라 회전 이축압출기를 이용하여 제조하여 연소성 및 열적특성을 평가하기 위하여 콘칼로리미터 실험및 열중량 분석실험을 실시하였다. 그리고 복합체의 난연성능 향상을 위하여 난연제(3종)를 첨가한 복합체의 화재성능을 평가하였다. 콘칼로리미터 실험 결과 난연제를 첨가하지 않은 복합체의 열방출률이 가장 높았으며 최대 열방출률 값은 $446.6kW/m^2$, 평균 열방출률 값은 $185.5kW/m^2$으로 가장 높게 나타났다. 열중량 분석 결과 난연제 첨가한 복합체들의 열분해가 먼저 시작되고 열 안정성을 향상시켰다.