• Title/Summary/Keyword: Heat reduction process

Search Result 437, Processing Time 0.027 seconds

A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method (전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구)

  • Cho, Sung Mo;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2018
  • In this study, metal properties were compared by preparingthree iron knives from steel ingots produced via traditional iron-making, and ingot which jointed the steel of modern times. Metal microscope and SEM-EDS analysis revealed fine ferrite and pearlite structures of the hypo-eutectoid steel of Fe-C alloys. All samples also exhibited martensite on the blade of the knife. By Vicker's hardness analysis, the hardness of the sand iron knife (K1) was 533.38 HV, sand iron-nickel steel knife (K3) was 514.8 HV, and sand iron-carbon steel knife (K2) was 477.02 HV. The mass reduction due to wear was 0.058% for K1, 0.059% for K3, and 0.144% for K2. EPMA(Electron probe micro-analyzer) analysis of the surface pattern of the specimens confirmed that the patterns were exposed due to differences in the content of C or the chemical composition. Additional research on heat treatment processes is needed to increase the abrasion resistance of blades. Traditional steel ingots could produce high-quality steel if combined with nickel steel.

An Evaluation of Minimum Explosible Concentration and Explosion Severity of Coal Dust in a Thermal Power Plant (화력발전소용 석탄분진의 최소폭발농도와 폭발강도 평가)

  • Yeosong Yoon;Keun-won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • The use of low-grade coal is continuously increasing with the development of combustion technology and cost reduction for coal used in thermal power plants . During combustion, the latent heat of evaporation due to moisture is large, and there is a risk of spontaneous combustion and dust explosion during the process of storing and pulverizing coal. This study compared and evaluated the minimum explosive concentration and explosive strength of four types of coal dust-fine, coal dust-coarse, wood pallet+organic dust, and wood chip with coal powder collected from domestic power plant D. The minimum explosive concentration of coal dust was measured according to JIS Z 8818:2002, and the explosion strength was tested according to ASTM E1226 using a Siwek 20 L Chamber Apparatus. As a result of the minimum explosive concentration test, it was found that coal dust-fine has a risk of dust explosion, and since an explosion occurs at a dust concentration of 130 g/m3 of wood chips, it was found that there is a risk of explosion at the lowest dust concentration. According to the dust explosion class standard, Kst is less than 200 bar m/s, and all samples fall under the explosion class St 1, and the dust has a low risk of explosion.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Larch Pellets Fabricated with Coffee Waste and the Commercializing Potential of the Pellets (커피박과 낙엽송 목분을 이용한 펠릿 제조 및 이에 대한 상용화 검토)

  • Yang, In;Han, Gyu Seong;Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.48-59
    • /
    • 2018
  • This study was conducted to suggest the effective management and recycling processes of coffee waste, which can be easily obtained from coffee shops and coffee-related products industries. Prior to the fabrication of pellets, the potential of coffee waste as a raw material of pellet was investigated through the examination of its chemical compositions and fuel characteristics. Major gradient included in coffee waste was holocellulose, followed by fat/oil and protein. Coffee waste contained a small quantity of ash (0.7%), such as calcium, sodium, potassium and magnesium. Interestingly, coffee waste was easily dried probably due to its porous structure. Pellets fabricated with coffee waste and larch sawdust showed good fuel characteristics, such as moisture content, ash content, density and durability. The pellets exceed greatly the minimum requirements of $1^{st}$-grade wood pellet standard designated by National Institute of Forest Science (NIFOS). Particularly, the high calorific value of coffee waste showed the potential as a raw material of pellet. However, owing to high nitrogen and sulfur contents, coffee waste is like to be used as a raw material of wood pellet for combined heat and power plants equipped with a reduction system of $NO_x$ and $SO_x$ gases. On the other hand, 91 wt% larch sawdust and 9 wt% coffee waste are required to fabricate the $1^{st}$-grade wood pellets designated by NIFOS. Pellets fabricated with the conditions are estimated to have nitrogen content of 0.298% and sulfur content of 0.03%. Lastly, if amounts of coffee waste and sawdust in the production of wood pellets are adequately adjusted according to its purchasing price, the manufacturing cost of pellet can effectively be reduced. In addition, it is expected tp prepare the effective recycling process of waste and to relieve the environmental burden with the reduction of waste from the commercialization of coffee waste/larch pellets.

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF