• Title/Summary/Keyword: Heat reduction process

Search Result 437, Processing Time 0.063 seconds

Oxidative Line Width Reduction of Imprinted Nanopatterns

  • Park, Dae Keun;Kang, Aeyeon;Jeong, Mira;Lee, Jaejong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.650-650
    • /
    • 2013
  • Although imprinted nanopatterns of organic polymer can be modified by the heat treatment [1], it generally requires high process temperatures and is material-dependent since the heat-induced mass loss of the organic polymer is greatly affected by its chemical characteristics. When oxygen is added during the annealing process, one can reduce the process temperature as well as the dependence of the materials. With the oxygen, line width reduction of a polymer (SU-8) patterns could be accomplished at temperature of as low as $250^{\circ}C$ which was not possible in the heat only process. This oxidative line width reduction can be dramatically promoted with the introduction of oxygen plasma. The oxygen plasma, with its highly-reactive oxygen species, vigorously etches away the organic materials, proven to be extremely effective line with reduction method. It is, however, very hard to control the extent and homogeneity of the etching, particularly of very fine patterns. Here, we report an effective and reliable line width reduction method of imprinted nanopatterns by combined plasma and heat treatment. The merits of this process include the reduction of process temperature, time and material-dependence.

  • PDF

A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules (망간단괴 용융환원 제련공정의 물질 및 열수지 모델링)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

Heat Treatment of Stator Core in Permanent Magnet Type Motor for Reduction of Friction Torque and Analysis of Their Cause (영구자석형 모터의 프릭션 토크 저감을 위한 고정자 철심의 열처리 및 발생원 분석)

  • Ha, Kyung-Ho;Lim, Yang-Su;Kwon, Oh-Yeoul;Kim, Ji-Hyun;Kim, Jae-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1752-1758
    • /
    • 2008
  • This paper deals with the reduction of friction torque in permanent magnet motors by using the heat treatment of stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress acting on the edge of stator tooth induces significant plastic and elastic deformation and then cause the change of magnetization properties. Then, the mechanical and magnetic unbalance in the sheared region of stator tooth produced by material cutting has influence on the friction torque. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation, and then proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

An Experimental Study on the Evaluation of Thermal Performance of Floor mortar with PCM (PCM을 혼입한 방통 모르타르의 열적 성능 평가에 관한 실험적 연구)

  • Kim, Bo-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.5-6
    • /
    • 2011
  • CO2 reduction is the most urgent issue the world is facing. So, there should be a measure to reduce the CO2 emission in construction industry which has more released CO2 gas than other industries. CO2 emission of building depend on using energy. Then efficient energy use process working efficiently at CO2 reduction. Therefore In this study, author find the technical possibility of saving the building energy using the PCM which is able to control heat, storage heat and potential heat. So, it considered that apply to floor heating type which is major heating system of living space in Korea. And evaluate the Using possibility.

  • PDF

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

Effect of a Multi Air-staged Burner on NOx Formation and Heat Transfer in Furnace Adopted the Reburning Process (재연소 과정을 적용한 연소로에서 공기 다단 연소기의 NOx 발생 및 열전달에 대한 효과)

  • Kim, Hyuk-Su;Baek, Seung-Wook;Lee, Chang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.842-849
    • /
    • 2006
  • An experimental study has been conducted to investigate the effects of a multi air-staged burner on NOx formation and heat transfer in a 15kW large-scale laboratory furnace adopted the reburning process. The reburn fuel as well as burnout air was injected from each nozzle attached at the wall of the cylindrical furnace. Fuel in both main burner and reburn nozzle was LPG (Liquefied Petroleum Gas). The paper reports the influences on NOx reduction of reburn fuel fraction in reburning zone. Temperature distribution inside the overall region as well as total heat flux at the wall of the furnace has been measured to examine the heat transfer characteristics due to the reburning process. For comparison, the reburning effects were examined for a combustor with two types of burner; a regular single staged burner and a multi-air staged burner. A gas analysis was also performed to evaluate an appropriate condition for NOx emission in a primary zone for the excess air ratio of 1.1. As a result, combustion efficiency expected to become more efficient due to the reduction of heat loss in burnout zone decrease when multi air-staged burner in furnace adopted reburning technology was used.

Analysis on the heat-resisting method of the electrolytic metal reduction reactor in the test facility for the spent fuel waste (사용후핵연료 시험시설에서 전기 금속 전환반응기의 내열 방안 분석)

  • 김영환;윤지섭;정재후;홍동희;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.776-779
    • /
    • 2003
  • To reduce the storage space of spent fuel used at the atomic power plants in the over the world, the uranium elements contained in the spent fuel is being extracted and effectively stored. For this, the spent fuel are oxidized and deoxidized. In this study, it is produced the heat-resisting methods about the spent fuel management technology research and test facility for the spent fuel waste for spent fuel minimized. The first considered processes in the facility are the electrolytic metal reduction reactor process. Since the electrolytic metal reduction reactor is operated at the high temperature range, we have to consider the heat-resisting methods for the devices. For the heat-resisting methods, we have searched and analyzed technical reference for the heat-resisting methods. We have calculated thermal stress and strain of each devices by the commercial analysis software, ANSYS. D.S. It is experimented for inspecting confidence rate of analysis results. By using the results, we have analyzed the problems of parts and determined the heat-resisting material, commercial parts, and the size of parts and O-ring. Based on these results, it is produced the heat-resisting methods of magnesia filter, cathode, and reactor for the electrolytic metal reduction reactor.

  • PDF

Reduction Kinetics of Gold Nanoparticles Synthesis via Plasma Discharge in Water

  • Sung-Min Kim;Woon-Young Lee;Jiyong Park;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.386-392
    • /
    • 2023
  • In this work, we describe the reduction kinetics of gold nanoparticles synthesized by plasma discharge in aqueous solutions with varied voltages and precursor (HAuCl4) concentrations. The reduction rate of [AuCl4]- was determined by introducing NaBr to the gold colloidal solution synthesized by plasma discharge, serving as a catalyst in the reduction process. We observed that [AuCl4]- was completely reduced when its characteristic absorption peak at 380 nm disappeared, indicating the absence of [AuCl4]- for ligand exchange with NaBr. The reduction rate notably increased with the rise in discharge voltage, attributable to the intensified plasma generated by ionization and excitation, which in turn accelerated the reduction kinetics. Regarding precursor concentration, a lower concentration was found to retard the reduction reaction, significantly influencing the reduction kinetics due to the presence of active H+ and H radicals. Therefore, the production of strong plasma with high plasma density was observed to enhance the reduction kinetics, as evidenced by optical emission spectroscopy.

Heat Treatment of Stator Core for Reduction of DC-Bias of Cogging Torque (코깅토크 DC성분 저감을 위한 모터 철심 열처리)

  • Ha, Kyung-Ho;Kim, Ji-Hyun;Kwon, Oh-Yeoul;Kim, Jae-Kwan;Lim, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.695-696
    • /
    • 2008
  • This paper deals with the reduction of DC component of cogging toruqe by using the heat treatment of the stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress at the edge of stator tooth induces significant plastic and elastic deformation and influences magnetic properties. Then, these phenomenon in the sheared region has influence on the magnetic unbalance in the air-gap of motor. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation and proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

  • PDF