• 제목/요약/키워드: Heat recovery

검색결과 999건 처리시간 0.027초

습증기를 포함한 연소가스의 폐열회수를 위한 열교환기 성능 예측 (Performance Prediction of Heat Exchanger for Waste Heat Recovery from Humid Flue Gases)

  • 정동운;이상용;이한주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.276-281
    • /
    • 2000
  • A simulation program using the mass transfer correlation was constructed to analyze 1-D simplified condensing flow across the tube bank. Higher efficiency was anticipated by reducing the flue gas temperature down below the dew point where the water vapor in the flue gas is condensed at the surface of the heat exchanger; that is, the heat transfer by the latent heat is added to that by the sensible heat. Thus, there can be an optimum operating condition to maximize the heat recovery from the flue gas. The temperature rises of the flue gas and the cooling water between the inlet and the outlet of the tube bank were compared with the experimental data reported previously. The predicted results agree well with the experimental data. Using this simulation program, the parametric studies have been conducted fur various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the rows, and the conductivity of the wall material.

  • PDF

열교환장치의 구조 및 재질에 따른 열회수율과 파울링의 발생 특성 (Characteristics of Heat Recovery Rate and Fouling according to Structures and Materials in Heat Exchangers)

  • 김현상;김용구;봉춘근;이명화
    • 자원리싸이클링
    • /
    • 제24권2호
    • /
    • pp.3-12
    • /
    • 2015
  • 본 연구에서는 급수예열기 및 공기예열기 등의 열교환장치의 구조 및 재질에 따른 열회수율 및 파울링 발생량 특성에 대해 조사하였다. 열교환기는 석탄화력발전소에서 일반적으로 구성된 급수예열기와 공기예열기를 대상으로 하였고, 소형소각로를 제작하여 모사실험을 수행하였다. 24시간동안 미분탄을 연소하면서 파울링 발생 및 열회수율의 변화를 관찰하였는데, 급수예열기의 구조에 따른 파울링 발생량은 핀(FIN) 튜브형 > 튜브 연결형 > 파이프형 > 자동세정형의 순서로 발생량이 많았으며, 그에 따른 열회수율은 핀튜브형 > 자동세정형 > 파이프형 > 튜브연결형 순으로 높게 나타났다. 공기예열기의 경우에는 구조에 따라 핀(FIN)튜브형 > 핀(FIN)판형 > 파이프형 > 테프론 파이프형 > 세라믹 파이프형 순으로 파울링 발생량이 많았으며, 열회수율도 같은 순서로 높게 나타났다. 재질의 내구성, 내산성, 내열성 등을 고려하여 세라믹이나 테플론 코팅을 할 경우에는 파울링량을 감소시킬 수는 있으나, 열회수율이 낮게 나타나 비효율적이었다.

중고온 범위 폐열회수용 나프탈렌 히트파이프 열교환기에 대한 실험적 연구 (Experimental Study on Naphthalene Heat Pipe Heat Exchanger for Middle-high Temperature Heat Recovery)

  • 정원복;박수용;황선홍
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.64-69
    • /
    • 2007
  • This study is to develop heat recovery system using high performance heat pipe heat exchanger for Middle-high temperature range industrial exhaust gas. The naphthalene is used as working fluid of heat pipe in this study. Single naphthalene heat pipe could transport over 2,000 watts with $0.05^{\circ}C/W$. The heat pipe heat exchanger consist of 50 naphthalene heat pipes recovered 62 kW when over $400^{\circ}C$ gas exhausted and the maximum recovered heat rate was 173 kW in this study.

  • PDF

Au/YBCO 박막 곡선에서의 회복 분석 (Analysis on Recovery in Au/YBCO thin Film Meander Lines)

  • 김혜림;임성우;오성용;현옥배
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.119-125
    • /
    • 2007
  • We investigated recovery in $Au/YBa_2Cu_3O_7$ (YBCO) thin film meander lines on sapphire substrates. The meander lines were fabricated by patterning YBCO films coated with gold layers. The lines were subjected to simulated AC fault current and then small current was applied for recovery measurements. The samples were immersed in liquid nitrogen during the experiment. After the fault, the resistance decreased linearly, first slowly and then fast to zero. The initial slow decrease was due to the decrease of the meander line temperature, whereas the fast decrease was originated from the transition from the normal state to the superconducting state. The recovery speed depended on the size of samples, and was faster in the smaller samples during the whole period of recovery. The experimental results were analyzed quantitatively with the concept of heat transfer within the sample and to the surrounding liquid nitrogen. A heat balance equation was solved for the initial phase of recovery, and an expression for the time dependence of resistance was obtained. The result agreed with data well.

  • PDF

해수열원 및 폐열이용 고성능 열펌프 시스템 성능실험 (Performance Test for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.979-986
    • /
    • 2003
  • The performance characteristics of heating and cooling operation for a heat pump system using seawater heat source and exhaust energy are presented. The heat pump system is made of a waste heat recovery system and a vapor compression refrigeration system. The working fluid is R-22. The heat pump system COPs are measured during heating and cooling operation modes, and the resultant COPs were 9.7 and 7.9, respectively, which are three times higher than those of the heat pump itself. Therefore, the performance of the heat pump system using exhaust energy is excellent compared to that of a general heat pump. The experimental data can be effectively used for the design of the high efficient heat pump using a seawater heat source.

농용(農用) 내연기관(內燃機關) 폐열(廢熱)의 열(熱)에너지 회수(回收)(I) -시스템 설계(設計)와 주변수(主變數) 분석(分析) 및 실험(實驗)- (Thermal Energy Recovery from Waste Heat of I.C. Engine for Agriculture(I) -System Design, Analysis of System Variables and Experiments-)

  • 서상룡;유수남
    • Journal of Biosystems Engineering
    • /
    • 제11권2호
    • /
    • pp.23-30
    • /
    • 1986
  • A waste heat recovery system for an internal combustion engine for agriculture was developed. The system is for recovering both of exhaust heat and cooling heat of an engine and is so simple in its structure that can be used in rural area easily. A series of experiment was carried out to the experiment which will be discussed later on, collect data for the performance of the system at various operating conditions of the system and an engine and to determine a range of coolant temperature in which performance of an engine is not affected by the heat recovery system incorporated. The obtained experimental data is not only useful to materialize performance of the system at the experimental conditions but also to construct a mathematical model of the system to predict the system variables beyond the scope of

  • PDF

환기관점에서 본 열교환 환기유니트 (Consideration of Heat Recovery Ventilator from Ventilating Standpoint)

  • 송준원;강일경;김태희;신용섭;박재성;최원영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.417-422
    • /
    • 2006
  • On trends of 'well-being', heat recovery ventilators(HRV) are recently installed in high rise buildings. HRV is not energy saving instrument but ventilating one. But many people have not been aware of the accurate fact. In this study, performances of HRV are tested under foreign and domestic standards. Especially air-tightness is measured three times by using gas concentration method and pressing equipment. Wet effective ventilating air volume is acquired by solving gas concentration equations. After research air-tightness and effective ventilating air volume must be more focused on than heat transfer efficiency to select the optimal HRV. Heat transfer efficiency must be adjusted by air-tightness results.

  • PDF

해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사 (Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

창호통합형 배열회수 환기시스템의 열성능 및 경제성 평가 (An Analysis on Thermal Performance and Economic of Heat Recovery Ventilation System Integrated with Window)

  • 성욱주;조수;송규동
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.646-655
    • /
    • 2012
  • This study is intended to analyze the thermal performance and evaluate the applicability about non-duct type heat recovery ventilation system integrated with window. Eventually, economic analysis of the system is conducted according to building energy saving ratio of it. As results of the thermal performance, the U-factor of the window conducted on the basis of KS F 2278 appears to $1.8W/m^2K$, and the effective heat exchange efficiency of the ventilator conducted on the basis of KS B 6879 appears 49.95% for cooling, 66.89% for heating. In the applicability evaluated by TRNSYS 16, the caes of applying the heat recovery ventilator integrated with window is found to reduce the cooling or heating load by 2.9% or 13.5% than the non-ventilator case. The results of economic analysis taking a side of consumer is verified as the payback is 3 years, and the accumulated earning is 1,408,133 won in terms of '600,000 won/unit' for initial cost, 10 years for useful life of the system.

반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지소비 수치해석 (Numerical Analysis on Energy Consumption of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms)

  • 송근수;유경훈;김형태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1306-1311
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from the outdoor air introduced into clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is therefore useful for reducing the outdoor air conditioning load for a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. In the present study, numerical analysis and experiment was conducted to simulate the amount of energy reduction of exhaust air heat recovery type air washer system. The present numerical results showed good agreement with the results of the experimental data.

  • PDF