• 제목/요약/키워드: Heat rate

검색결과 5,910건 처리시간 0.028초

순환 공기 유량의 변화를 고려한 열펌프 건조기의 성능 해석 (Analysis on the Drying Performance with the Flow Rate of Circulation Air in a Heat Pump Dryer)

  • 이공훈;김욱중;이상열
    • 설비공학논문집
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2009
  • The simulation of a heat pump dryer has been carried out to figure out the effect of air flow rate on the drying performance represented by MER, SMER, and so on. The simulation includes the analyses of one-stage heat pump cycle and simple drying process using the drying efficiency. The heat pump cycle with Refrigerant 134a has been considered. In the dryer, some of drying air from the drying chamber flows through the heat pump system, the rest of air bypasses the heat pump system. The two air flows joins before the drying chamber inlet. The performance parameters considered in the present study are MER, SMER, the temperature and humidity of drying air. Those parameters are compared for different total air flow rate or bypass air flow rate.

$CO_2$ 열펌프용 내부 열교환기의 냉방조건에서 열전달 및 압력 강하 특성에 대한 연구 (Study on Heat Transfer and Pressure Drop Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Cooling Condition)

  • 김대훈;이상재;최준영;이재헌;권영철
    • 설비공학논문집
    • /
    • 제20권8호
    • /
    • pp.517-525
    • /
    • 2008
  • In order to study the heat transfer and pressure drop of an internal heat exchanger for $CO_2$ heat pump under cooling condition, the experiment and numerical analysis were performed. Four kinds of internal heat exchangers with a coaxial tube type and a micro-channel tube type were used. The experimental apparatus consisted of a test section, a power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of the internal heat exchanger refrigerant flow rate, the length of the internal heat exchanger, the operating condition of the gas-cooler, the evaporator and the type of the internal heat exchangers were investigated. With increasing of the flow rate, the heat transfer rate increased about 25%. The heat transfer rate of the micro-channel tube type was higher about 100% than that of the coaxial tube type. With increasing of the length of the internal heat exchanger, the heat transfer rate increased about $20{\sim}50%$. The pressure drop of the low-side tube was larger compared with that of the high-side tube.

Influence of Temperature and Humidity on Pregnancy Rate of Murrah Buffaloes under Subtropical Climate

  • Dash, Soumya;Chakravarty, A.K.;Sah, V.;Jamuna, V.;Behera, R.;Kashyap, N.;Deshmukh, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.943-950
    • /
    • 2015
  • Heat stress has adverse effects on fertility of dairy animals. Decline in fertility is linearly associated with an increase in combination of both temperature and humidity. The purpose of this study was to investigate the relationship between temperature humidity index (THI) and the pregnancy rate of Murrah buffaloes in a subtropical climate. The effects of genetic and non-genetic factors viz., sire, parity, period of calving and age group at first calving were found non-significant on pregnancy rate. The effect of THI was found significant (p<0.001) on pregnancy rate of Murrah buffaloes calved for first time and overall pregnancy rate. The threshold THI affecting the pregnancy rate was identified as THI 75. The months from October to March showed THI<75 and considered as non heat stress zone (NHSZ), while months from April to September were determined as heat stress zone (HSZ) with $THI{\geq}75$. The lowest overall pregnancy rate (0.25) was obtained in July with THI 80.9, while the highest overall pregnancy rate (0.59) was found in November with THI 66.1. May and June were identified as critical heat stress zone (CHSZ) within the HSZ with maximum decline (-7%) in pregnancy rate with per unit increase in THI. The highest overall pregnancy rate was estimated as 0.45 in NHSZ with THI value 56.7 to 73.2. The pregnancy rate was found to have declined to 0.28 in HSZ with THI 73.5 to 83.7. However, the lowest pregnancy rate was estimated as 0.27 in CHSZ with THI value 80.3 to 81.6.

자동차 공조용 응축기의 열전달특성에 관한 수치적 연구 (Numerical study on the heat transfer characteristics of the condenser for the car air-conditioners)

  • 배성열;정백영;김일겸;박상록;임장순
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.315-323
    • /
    • 1998
  • This paper contains a verification of simulation program to predict the capacity of a condenser used in car air-conditioners. Verification of simulation program is carried out with the comparison error between experiment and simulation bounds within 3.5%. The present investigation shows the results for heat transfer rates of condenser under different operating conditions, such as velocity and degree of superheat. The range of front velocity of air is 1∼5m/s. As the front velocity is increased, the heat transfer rate of condenser is largely increased at a low velocity range. In a meanwhile, heat transfer rate of condenser is almost constant in a range of velocity over 3m/s. As for the effect of inlet pressure of refrigerant on the heat transfer rate, we obtained the similar trend of heat transfer rates as like varying the front velocity, Also we have calculated the heat transfer rates with varying inlet superheats of refrigerant, the larger the superheat is, the more heat transfer rate is obtained.

  • PDF

Heat Generation Model of Angular Contact Ball Bearing with Oil-Air Lubrication

  • Na, Hee-Hyeong;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.63-68
    • /
    • 2000
  • Angular contact ball bearings are mainly used in the spindle, which requires high speed and stiffness. The heat generation is studied by experiments and simulations using a pair of angular contact ball bearings. The temperature variation of inner and outer races and the temperature increment distribution are measured by using thermocouples for the rotational speed, preload, viscosity of lubricant. The measured values from experiments are used to estimate the heat conduction rate. The method of oil-air lubrication is used for the experiment. The amount of conduction heat transfer to the test spindle and the convection heat transfer coefficients long the spindle are computed by using inverse method with temperature increment distribution. Total heat generation rate is estimated with the heat partition rate which is calculated from temperatures of inner and outer races. In addition, the empirical factor of oil-air lubrication method for Palmgren's heat generation model is suggested. The empirical friction coefficients, which are obtained from the experiments, depend on the preload condition, and can give us more accurate estimation of the heat generation in ball bearings.

  • PDF

루우프형 2상 유동 열사이폰의 비등열전달 특성에 관한 연구 (A Study on the Characteristics of Boiling Heat Transfer of Two-Phase Loop Thermosyphons)

  • 조동현
    • 수산해양교육연구
    • /
    • 제26권3호
    • /
    • pp.639-646
    • /
    • 2014
  • A heat exchanger using two-phase loop thermosyphons was developed as a waste heat recovery system. An experimental study was carried out on the heat transfer characteristics of two-phase loop thermosyphons heat exchanger and the results from the experiments were used to see the possibility which the two-phase loop thermosyphons could be an alternate solution for waste heat recovery system. In the present work, R134a has been used as the working fluid and the filling rate do working fluid and heat flux have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The experimental results showed the provisional results as a waste heat recovery system.

열방출률을 이용한 열감지기의 오동작 경계값 분석 (An Analysis of False Alarm Threshold Value by Heat Detector Using Heat Release Rate)

  • 홍성호;김두현
    • 한국화재소방학회논문지
    • /
    • 제17권3호
    • /
    • pp.26-30
    • /
    • 2003
  • 본 논문은 화재발생시 열감지기가 오동작하는 특성을 열방출률(Heat Release Rate : HRR)을 이용하여 경계값을 정량적으로 나타내고 그 경계값을 기준으로 감지기의 오동작 영역을 분석하였다. Crib 형태의 목재를 가지고 small-scale의 화재실험을 통하여 화재감지기의 동작시간 등을 측정하였고 이를 이용하여 화재감지기가 동작하는 순간의 HRR을 계산하였다. 화재실험으로부터 얻은 변수를 가지고 화재감지기가 오동작하는 HRR의 경계값을 계산한 결과 정온식 감지기는 20.24 kW 차동식 감지기는 13.59 kW로 나타났다.

RENAL REGULATION OF UREA EXCRETION DURING UREA INFUSION IN ACUTE HEAT EXPOSED BUFFALOES

  • Chaiyabutr, N.;Buranakarl, C.;Loypetjra, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권1호
    • /
    • pp.81-90
    • /
    • 1992
  • Five buffaloes kept in normal ambient temperature ($30^{\circ}C$) showed no significant changes in the heart rate, respiratory rate, packed cell volume, plasma constituents and renal hemodymics during intravenous infusion of urea for 4 h. The rate of urine flow, fractional urea excretion, urinary potassium excretion and osmolar clearance significantly decreased while the renal urea reabsorption markedly increased during urea infusion. The decrease of fractional potassium excretion was concomitant with the reduction of the rate of urine flow and urine pH. In animals exposed to heat ($40^{\circ}C$) the rectal temperature heart rate and respiratory rate significantly increased while no significant changes in GFR and ERPF were observed. An intravenous infusion of urea in heat exposed animals caused the reduction of the rate of urine flow with no changes in renal urea reabsorption, urine pH and fractional electrolyte excretions. During heat exposure, there were marked increases in concentrations of total plasma protein and plasma creatinine whereas plasma inorganic phosphorus concentration significantly decreased. It is concluded that an increase in renal urea reabsorption during urea infusion in buffaloes kept in normal ambient temperature depends on the rate of urine flow which affect by an osmotic diuretic effect of electrolytes. The limitation of renal urea reabsorption in heat stressed animals would be attributed to an increases in either plasma pool size of nitrogenous substance or body metabolism.

지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가 (A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump)

  • 정영주;조재훈;김용식;조영흠
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

판형 열교환기의 피치 및 세브론각이 열에너지 성능에 미치는 영향 (Effects of Plate Pitch and Chevron Angle in a Plate Heat Exchanger on Thermal Energy Performance)

  • 강병하;한상규
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.194-200
    • /
    • 2004
  • Thermal energy performance of a brazed plate heat exchanger has been evaluated experimentally. The effects of plate pitch as well as chevron angle of a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in the wide range as mass flow rates in detail. This problem is of particular interest in the design of a plate heat exchanger. The results obtained indicate that both heat transfer rate and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer rate is increased with a decrease in the plate pitch while the heat transfer is decreased with a decrease in the chevron angle. Friction factor correlations are suggested based on the measured pressure drop and effectiveness of plate heat exchangers are also compared.