• 제목/요약/키워드: Heat rate

검색결과 5,942건 처리시간 0.032초

Operational Envelope of a 150 kW Huels Type Arc-jet

  • Na, Jae-Jeong;Moon, Kwan-Ho;Hong, Yun-Ky;Baek, Seung-Wook;Park, Chul
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.187-195
    • /
    • 2006
  • In this work, we introduce a newly constructed arc-jet device of 150 kW input power. The design of this device is a Huels type with a narrow downstream electrode. General features of this device are first described. From the measured values of electrical power input, heat discharged into cooling water, gas flow rate, and settling chamber pressure, average enthalpy was determined using the heat balance and sonic throat methods. Using the settling chamber pressure and average enthalpy values, the flow properties in the nozzle and the heat transfer rate to the stagnation point of a blunt body are calculated accounting for thermochemical nonequilibrium. The envelope of enthalpy, pressure, degree of dissociation, and heat transfer rate are presented. Stagnation temperature is predicted to be between 4630 to 6050 $^{\circ}K$, and the stagnation point heat transfer rate is predicted to be between 175 and 318 W/$cm^{2}$ for a blunt body of 3 mm nose radius. Degree of dissociation in the stagnation region of the blunt body exceeds 30%.

  • PDF

Cu Seed Layer의 열처리에 따른 전해동도금 전착속도 개선 (Improvement of Electrodeposition Rate of Cu Layer by Heat Treatment of Electroless Cu Seed Layer)

  • 권병국;신동명;김형국;황윤회
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.186-193
    • /
    • 2014
  • A thin Cu seed layer for electroplating has been employed for decades in the miniaturization and integration of printed circuit board (PCB), however many problems are still caused by the thin Cu seed layer, e.g., open circuit faults in PCB, dimple defects, low conductivity, and etc. Here, we studied the effect of heat treatment of the thin Cu seed layer on the deposition rate of electroplated Cu. We investigated the heat-treatment effect on the crystallite size, morphology, electrical properties, and electrodeposition thickness by X-ray diffraction (XRD), atomic force microscope (AFM), four point probe (FPP), and scanning electron microscope (SEM) measurements, respectively. The results showed that post heat treatment of the thin Cu seed layer could improve surface roughness as well as electrical conductivity. Moreover, the deposition rate of electroplated Cu was improved about 148% by heat treatment of the Cu seed layer, indicating that the enhanced electrical conductivity and surface roughness accelerated the formation of Cu nuclei during electroplating. We also confirmed that the electrodeposition rate in the via filling process was also accelerated by heat-treating the Cu seed layer.

콘칼로리미터를 이용한 섬유강화플라스틱(FRP)의 연소특성 (Combustion Characteristics of Fiber Reinforced Plastic by Cone Calorimeter)

  • 이근원;김관응;이두형
    • 한국화재소방학회논문지
    • /
    • 제18권2호
    • /
    • pp.67-72
    • /
    • 2004
  • 본 연구는 작업장의 건축물이나 구조물의 구성요소로 사용되어지는 섬유강화플라스틱의 연소특성을 평가하였다. 섬유강화플라스틱의 연소특성은 ISO 5660에 따라 콘칼로리미터를 사용하여 수행하였다. 섬유 강화플라스틱의 착화시간과 열방출율은 복사열과 난연제의 함량에 따라 달랐다. 섬유강화플라스틱의 열방출율은 복사열의 증가에 따라 증가하였다. 섬유강화플라스틱의 착화시간과 최대 열방출율을 이용하여 플래쉬오버(Flashover)의 가능성을 Petrella가 제시한 분류방법에 따라 검토하였다.

정적연소기에서 점화장치가 열발생률과 잘량연소율에 미치는 영향에 관한 연구 (A Study on the Effects of Ignition Systems on the Heat Release Rate and Mass Fraction Burnt at a Constant Volume Combustion Chamber)

  • 송정훈;이기형;선우명호
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1486-1496
    • /
    • 2000
  • The initial flame kernel development and flame propagation in a constant volume combustion chamber is analyzed by the heat release rate and the mass fraction burnt. The combustion pressure is measured with a piezoelectric type pressure sensor. In order to evaluate the effects of ignition system and ignition energy on the flame propagation, four different ignition systems are designed and tested, and the ignition energy is varied by the dwell time. Several different spark plugs are also tested and examined to analysis the effects of electrodes on flame kernel development. The results show that the when the dwell time is increased, and when the spark plug gap is extended, heat release rate and the mass burnt fraction are increased. The materials and shapes of electrodes affect the flame development, because they change the energy transfer efficiency from electrical energy to chemical energy. The diameter of electrodes influences not only the heat release rate but also the mass burnt fraction as well.

엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구 (A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine)

  • 류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

저신장율 에지 화염의 진동 불안정성 (Oscillatory Instability of Low Strain Rate Edge Flame)

  • 김강태;박준성;김정수;오창보;길상인;박정
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

RTS-SAREK을 이용한 사무용 건물의 나이트 퍼지 성능 평가 (Night Purge Evaluation Using the RTS-SAREK in Office Buildings)

  • 신동신;박성근;박영수;박지수;이진영
    • 설비공학논문집
    • /
    • 제27권12호
    • /
    • pp.633-638
    • /
    • 2015
  • This study evaluates the capacity of night purging in office buildings to reduce the cooling load. RTS-SAREK is used to estimate the performance of night purging on the steady state. To overcome steady state RTS program limitations, we added unsteady heat transfer equations. When the ACH (Air Change per Hour) increases, the wall temperature decreases in both the steady and unsteady states. The unsteady heat transfer rate is different from the steady transfer rate, which validates the unsteady calculation. When ACH is low, the heat transfer rate increases continuously with time. When ACH becomes higher, the heat transfer rate increases and decreases with time. When ACH is quite high, there exists a large difference in the heat transfer rate between the steady and unsteady calculations, which emphasizes the importance of the unsteady calculation.

$Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향 (Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics)

  • 한봉석;이홍림;전명철
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

도시의 방사전열에 관한 기초 연구 (A Basic Study on Urban Radiation Heat Transfer)

  • 김종민
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.35-43
    • /
    • 2002
  • This research makes that quantitative radiation property of an actual town ward is obtained in quest of the parameter with regard to a radiation heat transfer property and set up several town ward models that reproduced a solid form of a city along the attribute of the city. A regular trend possibility that is able to evaluate a radiation characteristics of a town ward quantitatively from a town ward guideline and confirmation that is produced about each parameter as a result of a numerical value simulation it obtained. This research shot a coefficient of Gebhart's emission absorption. sky radiation absorption rate direct solar radiation absorption rate the parameter with regard to a radiation heat transfer characteristics of a town ward in each town ward model and a volume rate of a town ward advances case study under regular such condition and shot the absorption rate, direct and others days and calculated an absorption rate and checked about the relation between a town ward and each radiation heat transfer property of a city.

저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과 (Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames)

  • 박준성;황동진;김정수;길상인;김태권;박정
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified