• 제목/요약/키워드: Heat of Fusion

검색결과 440건 처리시간 0.029초

AZ91-CaO 합금의 미세조직과 인장 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Tensile Properties of AZ91-CaO Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제25권4호
    • /
    • pp.190-195
    • /
    • 2012
  • This study aims to investigate and compare the microstructures and room temperature tensile properties for AZ91 and ECO-AZ91 (AZ91+0.3%CaO) alloys in as-cast, T4 and T6 states, respectively. In as-cast state, the ECO-AZ91 alloy has finer microstructure than the AZ91 alloy. The AZ91 alloy exhibits greater ductility, while YS and UTS are inferior to those of the ECO-AZ91 alloy. After T4 treatment, most of ${\beta}$ compounds disappear in the AZ91 alloy, whereas ${\beta}$ phase is still observed in the ECO-AZ91 alloy due to its enhanced thermal stability, resulting in lower values of ductility and UTS. In T6 state, YS and UTS are better in the ECO-AZ91 alloy.

Non-Invasive Environmental Detection using Heat Shock Gene-Green Fluorescent Protein Fusions

  • 차형준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.355-356
    • /
    • 2000
  • Three 'stress probe' plasmids were constructed and characterized which utilize a green fluorescent protein (CFP) as a non-invasive reporter to elucidate Escherichia coli cellular stress responses in quiescent or 'resting' cells. Facile detection of cellular stress levels was achieved by fusion of three heat shock stress protein promoter elements, those of the heat shock transcription factor ${\sigma}^{32}$, pretense subunit ClpB, and chaperone DnaK, to the reporter gene $gfp_{uv}$. When perturbed by chemical or physical stress (such as heat shock, nutrient (amino acid) limitation, addition of IPTG, acetic acid, ethanol, phenol, antifoam, and salt (osmotic shock), the E. coli cells produced GFPuv which was easily detected from within the cells as emitted green fluorescence. A temporal and amplitudinal mapping of these responses was performed, demonstrating regions where quantitative delineation of cell stress was afforded.

  • PDF

레이저 브레이징에서의 열유동 해석에 관한 연구 (A Study on Analysis of Heat Flow in Laser Brazing)

  • 전민규;김원배;한국찬;나석주
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.96-105
    • /
    • 1995
  • An advantage offered by brazing over fusion welding is that strong joints may be produced at relatively low heat input. To minimize the thermal effects and maintain the desired dimension of assemblies. the CO$_{2}$ laser beam can be applied to the brazed joint of pin and plate as a micro heat source. This paper presents a analysis model of the laser brazing process considering the laser beam mode and heat flow in brazed parts by using the finite element method. The simulation results were compared with the experimental results obtained from the infrared temperature sensing system. Based on these results, the proper process parameters were investigated to get a good joining quality. The influence of the beam mode change was examined with respect to the temperature distribution and joint quality.

  • PDF

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향 (Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel)

  • 정병훈;공종판;강정윤
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

Laser patterning된 DLC 박막의 Tribology 특성연구 (A Study on Tribology Characteristics of Laser Patterned DLC Thin Films)

  • 이지석;김동준;신동철;김태규
    • 열처리공학회지
    • /
    • 제33권1호
    • /
    • pp.25-32
    • /
    • 2020
  • In this study, the tribology of laser patterned DLC thin film was studied. DLC thin films were coated by RF-PECVD to improve the durability of tungsten carbide (WC) materials. DLC thin films have high hardness and low friction characteristics. Dot and line patterning was processed on the surface of DLC thin film with femtosecond laser, and the coefficient of friction was improved. As a result of ball on disk abrasion test, the hardness and friction coefficient of DLC thin films were much better than that of WC material. The friction coefficient of DLC thin film with dot patterning and line patterning showed better results. The excellent performance of the laser patterned DLC coating is appeared to reduce the coefficient of friction due to the reduction of surface contact area.

CAVITY OF CREATION FOR COLD FUSION AND GENERATION OF HEAT

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.3-12
    • /
    • 1996
  • Cold fusion technologies now are being developed very successfully. The $\pi$-far infrared rays are generated from three dimensional crystallizing $\pi$-bondings of oxygen atoms in water molecules. The growing cavity in water molecules make near resonance state and a vortex of infrared rays and attracts $\pi$-far infrared rays in the water. The cavity surrounded by a lot of $\pi$-far infrared rays has a very strong gravitational field. The $\pi$-far infrared rays are contracted into $\pi$-far infrared rays of half wave length and of one wave length. The $\pi$-far infrared rays of half wave length generate heat while $\pi$-far infrared rays of one wave length are contracted into $\pi$-gamma rays of one wave length. The contracted $\pi$-gamma rays of one wave length make nucleons and mesons, which is the creation and transmutation of matter by covalent bondings and three-dimensional crystallizing $\pi$-bondings into implosion bonding. Patterson power cell generates a very strong gravitational cavity because the electrolysized oxygen atoms make $\pi$-far infrared rays than in plain water.

  • PDF

세포융합(細胞融合) 및 Hybridoma 세포작성(細胞作成)에 의한 항자돈백리(抗仔豚白痢) Monoclone항체(抗體)의 생산(生産) (Monoclonal Antibody Production against Piglet Diarrhea Agent (Enterotoxigenic E. coli) by Cell Fusion-Hybridoma Cell Technique)

  • 김우호;안수환;윤용덕
    • 대한수의학회지
    • /
    • 제27권2호
    • /
    • pp.259-267
    • /
    • 1987
  • Enterotoxigenic E. coli (ETEC) cause an acute diarrhea (white scour) in both animals and humans. The disease process initially involves the adherence and colonization of the mucosal surface of the small intestine, followed by the elaboration of a heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). Intestinal adherence or colonization by ETEC is generally mediated by a specific surface-associated pilus (fimbrial) antigen that endows the bacteria with the capacity to adhere to epitherial cell surface. Fourteen monoclonal antibodies (MAbs) directed against pili antigens of ETEC were obtained by cell fusion/hybridoma technique. They were characterized by indirect immunofluorescence assay (IFA), and divided into four groups: specific to K99 antigen (group 1), cross-reactive with K99 and F41 antigens (group 2), specific to K88 antigen (group 3) and specific to 987P and K88 antigens (group 4), respectively. These MAbs demonstrated the distinct pili (K) antigens on the surface of ETEC by IFA, and could be utilized as diagnostic reagent for the identification of ETEC. When eighty-seven field isolates of E. coli from piglet with diarrhea were tested by group 3 MAb, fourty-two strains (48.3%) has K88 pilus antigen suggesting that this is one of the major pilus antigen of ETEC present in fifeld.

  • PDF

표면개질에 의한 헤테로에피텍시 단결정 다이아몬드의 결정성 향상 (Improving the Crystallinity of Heteroepitaxial Single Crystal Diamond by Surface Modification)

  • 배문기;김민수;김성우;윤수종;김태규
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.124-128
    • /
    • 2020
  • Recently, many studies on growth of single crystal diamond using MPECVD have been conducted. The heteroepitaxial method is one of the methods for growing diamonds on a large-area substrate, and research on synthesis of single crystal diamonds using SrTiO3, MgO, and sapphire substrates has been attempted. In addition, research is being conducted to reduce the internal stress generated during diamond growth and to improve the crystallinity of the diamond. The compressive stress generated therein causes peeling and bowing from the substrate. This study aimed to synthesize heteroepitaxial single crystal diamonds with high crystallinity by surface modification. A diamond thin film was first grown on a sapphire/Ir substrate by MPECVD, and then etched with H2 gas to modified the morphology and roughness of the surface. A secondary diamond layer was grown on the surface, and the internal stress, crystallinity of the diamond were investigated. As a result, the fabrication of single crystal diamonds with improved crystallinity was confirmed.

Al-Si Coated Boron Steel과 Zn Coated DP Steel 이종금속의 DISK Laser 용접부 미세조직과 경도 (Microstructures and Hardness of DISK Laser Welds in Al-Si Coated Boron Steel and Zn Coated DP Steel)

  • 안용규;강정윤;김영수;김철희;한태교
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.90-98
    • /
    • 2011
  • Al-Si coated Boron steel and Zn coated DP steel were welded using DISK laser and the microstructure and hardness of the weld were investigated. Full penetration was obtained, when the welding speed was lower than 4m/min. In the specimen welded with laser power of 3 kW and welding speed of 2 m/min, the hardness was the highest in the heat affect zone in the boron steel (HAZ-B) and that of the heat affect zone in the DP steel (HAZ-D) was lower than HAZ-B. The hardness of fusion zone was in between those of HAZ-B and HAZ-D. The decreased hardness from each HAZ to base metal(BM) could be explained that ferrite contents increases when access to the BM. The variation of hardness in the welds could be explained by the difference of microstructure, that is, full martensite in HAZ-B, mixture of martensite and bainite in the fusion zone, and the mixture of martensite, ferrite and bainite in HAZ-D.