• 제목/요약/키워드: Heat leak

검색결과 108건 처리시간 0.027초

증발가스 재액화 드럼의 단열구조에 관한 실험적 연구 (The Experimental Study of Insulation Structure for BOG Re-liquefaction Drum)

  • 김익수;정영준
    • 한국가스학회지
    • /
    • 제25권1호
    • /
    • pp.7-13
    • /
    • 2021
  • 재액화 드럼은 과냉각된 LNG를 증발가스에 직접 분사하기 위해 상부에 스프레이 노즐을 설치하고, 기액 분리가 용이하도록 데미스터를 설치한 제품으로, 소형 재액화 설비의 재액화 효율을 높이기 위해 개발한 제품이다. 드럼의 상온 내압기밀시험에서는 설계압력의 1.5배 이상의 압력에서도 누설(Leak)이 없었으나, 단열성능시험 중 온도변화에 따른 수축/팽창으로 인해 볼트풀림 현상이 발생하였다. 제품의 지속적인 사용을 위해 플랜지 결합부의 단열 시공은 탈부착이 가능하도록 개발하였으며, 기존 단열과의 열침입량 비교 결과 드럼 내 유입 유량 대비 매우 미미함을 확인하였다.

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권5호
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.

고온 (750 ~ 850℃) SOFC용 밀봉재의 특성에 미치는 고열팽창계수를 갖는 필러의 영향 (The Effects of a Filler with a High Coefficient of Thermal Expansion on a Sealant for High-Temperature (750 ~ 850℃) SOFCs)

  • 김빛남;이미재;황종희;임태영;김진호;황해진;김일원;정운진
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.470-475
    • /
    • 2013
  • In this study, we report that effects of a filler with a high coefficient of thermal expansion on a sealant for high-temperature ($750{\sim}850^{\circ}C$) SOFC. We designed a $SiO_2-BaO-ZnO-B_2O_3-Al_2O_3$ glass system with a softening temperature higher than $750^{\circ}C$. The properties of the glass system show not only low volumetric shrinking but also low swelling. The glass system did not create a crystal phase during along-term heat treatment. We fabricated a seal gasket with 0, 10, 15, and 20 wt% cristobalite added as filler materials with glass powder. The coefficient of thermal expansion of the seal gasket increased according to cristobalite content. During along-term heat treatment, the leak rate decreased by about 5% after a heat treatment in an oxidizing atmosphere at $750^{\circ}C$ for 2000 h, also decreasing by about 6% after a heat treatment in a reducing atmosphere at $750^{\circ}C$ for 1000 h.

액체수소 사고피해 완화기술에 대한 연구 (A Study on Mitigating Accidents for Liquid Hydrogen)

  • 조영도;김진준
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.29-33
    • /
    • 2012
  • 이 연구에서는 최근의 액체수소안전관련 연구현황을 간략히 살펴보고자 한다. 액체수소 저장용기가 파손되어 액체수소가 누출될 수 있다. 누출된 액체수소는 풀을 형성하고 증발하여 수소증기 운을 형성한 뒤 증기운 폭발이 일어날 수 있다. 액체수소를 저장하고 있는 용기가 외부로부터 유입되는 열에 의하여 증발하는 가스를 처리하지 못할 경우에는 BLEVE가 발생할 수 있다. 압축된 수소가스가 있는 시설에서는 수소누출에 의한 제트화제가 발생하고 지연점화에 의하여 개방공간에서 플래시 화재 및 폭발이 발생할 수 있다. 이러한 여러 가지 사건에 대하여 최근의 기술개발과 향후연구개발 방향에 대하여 간략히 살펴보았다.

소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가 (Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor)

  • 이사용;김낙현;구경회;김성균;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.

Signal processing method based on energy ratio for detecting leakage of SG using EVFM

  • Xu, Wei;Xu, Ke-Jun;Yan, Xiao-Xue;Yu, Xin-Long;Wu, Jian-Ping;Xiong, Wei
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1677-1688
    • /
    • 2020
  • In the sodium-cooled fast reactor, the steam generator is a heat exchange device between sodium and water, which may cause leakage, resulting in a sodium-water reaction accident, which in turn affects the safe operation of the entire nuclear reactor. To this end, the electromagnetic vortex flowmeter is used to detect leakage of the steam generator and its signal processing method is studied in this paper. The hydraulic experiment was carried out by using water instead of liquid sodium, and the sensor output signal of the electromagnetic vortex flowmeter under different gas injection volumes was collected. The bubble noise signal is reflected by the base line of the sensor output signal. According to the relationship between the proportion of the bubble noise signal in the sensor output signal and the gas injection volume, a signal processing method based on the energy ratio calculation is proposed to detect whether the water contains bubbles. The gas injection experiment of liquid sodium was conducted to verify the effectiveness of the signal processing method in the detection of bubbles in sodium, and the minimum detectable leak rate of water in the steam generator was detected to be 0.2 g/s.

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

부분 가열을 이용한 저온 Hermetic 패키징 (Low Temperature Hermetic Packaging using Localized Beating)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF

밀폐공간에서의 VCE에 의한 충격파 고찰 (A Study on the Shock Wave Caused by VCE in Enclosure)

  • 임사환;이종락;허용정
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.1-6
    • /
    • 2008
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

밀폐공간에서의 VCE에 의한 충격파 고찰 (A Study on the Shock Wave caused by VCE in Enclosure)

  • 임사환;허용정;이종락
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.54-59
    • /
    • 2007
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

  • PDF