• Title/Summary/Keyword: Heat intensity

Search Result 774, Processing Time 0.029 seconds

Impacts of anthropogenic heating on urban boundary layer in the Gyeong-In region (인공열이 도시경계층에 미치는 영향 - 경인지역을 중심으로 -)

  • Koo, Hae-Jung;Ryu, Young-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.665-681
    • /
    • 2012
  • This study investigates the influence of anthropogenic heat (AH) release on urban boundary layer in the Gyeong-In region using the Weather Research and Forecasting model that includes the Seoul National University Urban Canopy Model (SNUUCM). The gridded AH emission data, which is estimated in the Gyeong-In region in 2002 based on the energy consumption statistics data, are implemented into the SNUUCM. The simulated air temperature and wind speed show good agreement with the observed ones particularly in terms of phase for 11 urban sites, but they are overestimated in the nighttime. It is found that the influence of AH release on air temperature is larger in the nighttime than in the daytime even though the AH intensity is larger in the daytime. As compared with the results with AH release and without AH release, the contribution of AH release on urban heat island intensity is large in the nighttime and in the morning. As the AH intensity increases, the water vapor mixing ratio decreases in the daytime but increases in the nighttime. The atmospheric boundary layer height increases greatly in the morning (0800 - 1100 LST) and midnight (0000 LST). These results indicate that AH release can have an impact on weather and air quality in urban areas.

Effect of Washing and Subsequent Heat Treatment on Water Repellency of Silk Fabric Treated with Fluorocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • Silk fabric treated with fluorocarbon resins (Asahi Guard AG-7005 and AG-E061) were washed and subsequently heat treated varying the washing cycles and the temperature. After the processing, the water and oil repellencies, and contact angle to water were evaluated. The water and oil repellencies decreased by the washing and recovered by following heat treatment. Also ESCA measurement was carried out to investigate the surface chemical composition of the treated fiber. The $F_1s$ intensity of the treated fabric decreased by the washing and recovered by the subsequent heat treatment. On the other hand, the $O_1s$ intensity increased by the washing and decreased by following heat treatment. From the results, it is clear that change of the water and oil repellencies of the silk fabric treated with fluorocarbon resin occurred by the washing and subsequent heat treatment. Considering a change of the water repellency of the silk fabric treated with fluorocarbon resin, it seems likely that the fluoroalkyl group of the fluorocarbon resin rotates from surface to inside of the fiber by the washing to adapt to the hydrophilic circumstance, and the orientation of the fluoroalkyl groups of the resin disturbed by the washing recovers the orientation to the fiber surface after the subsequent heat treatment.

A Satellite View of Urban Heat Island: Causative Factors and Scenario Analysis

  • Wong, Man Sing;Nichol, Janet;Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.617-627
    • /
    • 2010
  • Although many researches for heat island study have been developed, there is little attempt to link the findings to actual and hypothetical scenarios of urban developments which would help to mitigate the Urban Heat Island (UHI) in cities. The aim of this paper is to analyze the UHI at urban area with different geometries, land use, and environmental factors, and emphasis on the influence of different geometric and environmental parameters on ambient air temperature. In order to evaluate these effects, the parameters of (i) Air pollution (i.e. Aerosol Optical Thickness (AOT)), (ii) Green space Normalized Difference Vegetation Index (NDVI), (iii) Anthropogenic heat (AH) (iv) Building density (BD), (v) Building height (BH), and (vi) Air temperature (Ta) were mapped. The optimum operational scales between Heat Island Intensity (HII) and above parameters were evaluated by testing the strength of the correlations for every resolution. The best compromised scale for all parameters is 275m resolution. Thus, the measurements of these parameters contributing to heat island formation over the study areas of Hong Kong were established from mathematical relationships between them and in combination at 275m resolution. The mathematical models were then tabulated to show the impact of different percentages of parameters on HII. These tables are useful to predict the probable climatic implications of future planning decisions.

Heat and mass transfer processes at the most heat-stressed areas of the surface of the descent module

  • Oleg A., Pashkov;Boris A., Garibyan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.493-506
    • /
    • 2022
  • The study presents the results of the research of heat and heat exchange processes on the heat-stressed elements of the structure of an advanced TsAGI descent vehicle. The studies were carried out using a mathematical model based on solving discrete analogs of continuum mechanics equations. Conclusions were drawn about the correctness of the model and the dependence of the intensity of heat and mass transfer processes on the most heat-stressed sections of the apparatus surface on its geometry and the catalytic activity of the surface.

Arginyl-fructosyl-glucose and Arginyl-fructose, Compounds Related to Browning Reaction in the Model System of Steaming and Heat-drying Processes for the Preparation of Red Ginseng

  • Suzuki, Yukio;Choi, Kang-Ju;Uchida, Kei;Ko, Sung-Ryong;Sohn, Hyun-Joo;Park, Jong-Dae
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.143-148
    • /
    • 2004
  • Brown color intensity has been a major factor to estimate the quality of red ginseng and its products. This study deals with the relationship between the browning reaction of ginseng root and two compounds, arginyl-fructosyl-glucose(Arg-fru-glc) and arginyl-fructose (Arg-fru), in the model system of steaming and heat-drying processes for the preparation of red ginseng. During the steaming process, a marked decrease of starch and a considerable formation of maltose occurred in main roots of raw ginseng, but the formation of glucose was scarcely observed. After the heat-drying process, the brown color intensity of the powdered preparation of steamed main roots was 3 to 4 times higher than that of the powdered preparation of raw main roots. Also, when the heat- drying process was done with the addition of L-arginine, brown color intensity of the powdered preparation of steamed main roots was 12 to 13 times higher than that of the powdered preparation of raw main roots. The amount ratios of browning reaction products formed from sugar compounds and amino acids in the model system of steaming and heat-drying treatments in vitro were in order of xylose > glucose > fructose > maltose > dextrin (DE 9) > sucrose > dextrin (DE 8) and soluble starch. Each solution of Arg-fru-glc and Arg-fru that were synthesized chemically from maltose plus L-arginine and glucose plus L-arginine, respectively, changed from colorless to brown color during the heat-drying treatment. Amino acids or sugars were effective on the acceleration of each browning reaction of Arg-fru-gIc and Arg-fru during the heat-drying treatment.

A Study on Durability Characteristics of Automobile Clutch Diaphragm Spring Steel According to Heat-Treatment Condition (자동차 클러치용 다이아프램 스프링 강(50CrV4)의 열처리 조건에 따른 내구특성에 관한 연구)

  • 남욱희;이춘열;채영석;권재도;배용탁;우승완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.137-143
    • /
    • 2000
  • An automobile clutch diaphragm spring is operating in a closed clutch housing under high temperature and subject to high stress concentration in driving condition, which frequently causes cracks and fracture. The material of spring is required to possess sufficient fatigue strength and tenacity, which depend largely on the condition of tempering heat treatment. In this paper, specimens are made under a number of different tempering temperatures md tested to find the optimal tempering heat treatment condition. The experiments include the verification of microscopic structure, hardness, tensile strength, fatigue crack growth rate, stress intensity factor range and residual stress. Also, decarbonization, which occurs in actual heat treatment process, is measured and allowable decarbonization depth is studied by durability test.

  • PDF

ANALYSIS OF THE OCEAN' AND ATMOSPHERE ROLES IN THEIR HEAT INTERACTION WITH USE OF SATELLITE AND VESSEL

  • Grankov, Alexander Georgievich;Mil'shin, Alexander Alexeevich;Krapivin, Vladimir Fedorovich;Golovachev, Sergey Petrovich
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1001-1002
    • /
    • 2006
  • Special problem emphasized by specialists in the field of analyzing the heat interchanges in the system ocean-atmosphere (SOA) is a necessity of determination of the near-surface atmospheric temperature, which can be only indirectly connected with characteristics of the SOA natural microwave radiation measured from satellites. That is why, the following dilemma is not obvious, but interesting and promised: what is better - to use the satellite methods for retrieving the partial parameters of the SOA or for analysis its state as a whole. To our opinion, this task is similar to the idea recognized by specialists engaged in the heat infrared region (8-12 mcm) of electromagnetic spectrum and its applications, where an intensity of natural infrared radiation (effective radiation) is used as the inherent property (the attribute) of the SOA heat balance. Here we studied important aspects of this problem: a) what medium initiates a heat transfer in the SOA and disturbs its heat balance - the ocean or the atmosphere b) what SOA parameters directly influence on its natural microwave radiation intensity (brightness temperature) measured from satellites? We relate these processes mainly to the synoptic range of time scales enriched by various events in the SOA interface such as the mid-latitude and tropical cyclones.

  • PDF

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(III) - Turbulent Dispersion from a Line Heat Source- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (3) -선형열원으로부터의 난류확산-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1300-1307
    • /
    • 1995
  • The effect of thermal stratification on the turbulent dispersion from a fine cylindrical heat source was experimentally examined in a wind tunnel with and without a strong temperature gradient. A 0.5 mm dia. nichrome wire was used as a line heat source. Turbulent intensities, r.m.s. value of temperature and convective heat fluxes were measured by using a hot-wire and cold-wire combination probe. The results show that the peack value and the spread of the vertical turbulent intensity for the stratified case are far lower than those in the neutral case, which indicates that the stable temperature gradient suppresses the vertical velocity component. All of the third order moments including heat fluxes measured in the stable condition have very small values than those of the neutral case. This nature suggests that the decrease of scalar fluctuations in the stably stratified flow is mainly due to the suppression ofthe turbulent diffusion processes by the stable stratification. A simple gradient model with a composite timescale which has a simple weighted algebraic mean between dynamic and thermal time scale yields reasonably good numerical values in comparison with the experimental data.

Effect of Heat-Treatment on the Optical Properties of Self-Assembled SiO2 Photonic Crystals (자기조립을 통해 형성된 실리카 광자결정의 광특성에 미치는 열처리 효과)

  • O, Yong-Taeg;Kim, Myung-Soon;Shin, Dong-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.127-131
    • /
    • 2005
  • We examined the effect of low temperature heat-treatment on the optical properties of the photonic crystals self-assembled using a monodispersed spherical $SiO_2$ nanoparticle. When the heat treatment temperature increased, the reflectance peak, which is induced by the photonic band gap, moved to a shorter wavelength direction, and the peak intensity of Fabry-Perot fringes also increased. The highest reflectance peak intensity was obtained in the sample heat-treated at $250\~300^{\circ}C$. The heat-treatment reduced the average particle size and the quantity of defects, and increased the packing density of the photonic crystal.