• Title/Summary/Keyword: Heat insulation

Search Result 887, Processing Time 0.026 seconds

A Study on the Analysis of Success Factors about Frozen and Refrigerated Warehouses using Fuzzy-AHP (Fuzzy-AHP를 활용한 냉동·냉장창고의 운영 성공요인 분석에 대한 연구)

  • Gu, Tae-Jun;Cha, Young-Doo;Nam, Tae-Hyun;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.121-131
    • /
    • 2017
  • The Fuzzy-analytic hierarchy process (AHP) was adopted as the methodology for this study because it allows for the use qualitative judgments by experts. Based on results of the analysis of the success factors for frozen storage/cold storage warehouses, the facility factor was identified as the most important to consider. This factor had a weight of 0.307, followed by systems and operations, accessibility, and standardization/automation with weights of 0.263, 0.255, and 0.175, respectively. The conclusions and implications of the study are as follows. First, the efficiency of constant temperature and humidity systems and the heat insulation property of buildings need to be enhanced. Second, the efficiency of the operations should be enhanced through the standardization of equipment rather than by standardizing product loading. Finally, since logistics and transportation costs are higher for frozen storage/cold storage warehouses than for general distribution, accessibility needs to be considered as the first priority.

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

Assembly and Test of the In-cryostat Helium Line for KSTAR (KSTAR 저온용기 내부의 헬륨라인 설치 및 검사)

  • Bang, E.N.;Park, H.T.;Lee, Y.J.;Park, Y.M.;Choi, C.H.;Bak, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In-cryostat helium lines are under installation to transfer a cryogenic helium into cold components in KSTAR device. In KSTAR, three kinds of helium should be supplied into the cold components, which are supercritical helium Into superconduction(SC) magnet system, liquid helium into current lead system, and gas helium into thermal shields. Cryogenic helium lines consist of transfer lines outside the cryostat, in-cryostat helium lines, and electrical breaks. In-cryostat helium lines should be guaranteed of leak tightness for tong time operation at high internal helium pressure of 20 bar. We wrapped the helium line with multi-layer insulator(MLI) to reduce radiation heat and insulated the surface of the high potential part with prepreg tape. The electrical break was fabricated by brazing ceramic tube with stainless steel tube. To ensure the operation reliability at operation temperature, all the electrical break have been examined by the thermal cycle test at liquid nitrogen and by the hydraulic test at 30 bar. And additional surface insulation was prepared with prepreg tape to give structural safety. At present most of the in-cryostat helium lines have been installed and the final inspection test is progressing.

Estimation of THI Index to Evaluate Thermal Stress of Animal-occupied Zone in a Broiler House Using BES Method (BES 기법을 이용한 육계사 내부 고온 스트레스 평가를 위한 THI 지수 모의)

  • Ha, Taehwan;Kwon, Kyeong-seok;Hong, Se-Woon;Choi, Hee-chul;Lee, Jun-yeob;Lee, Dong-hyun;Woo, Saemee;Yang, Ka-young;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sangyeon;Lee, In-bok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Thermal stress of livestock has been issued due to recent climate change trends and this causes reproductive disorders, decreased feed consumption, immunosuppression, and increased mortality of animals. Concept of THI has been widely used to quantitatively evaluate the degree of thermal stress for animals, however use of this concept is restricted for animals living in the enclosed facilities such as mechanically ventilated broiler houses. In this study, time-based internal energy flow and variation trends of temperature and humidity were analyzed based on BES technique. Local weather data, insulation characteristics of building materials, heat and moisture generation rate from broilers according to age, algorithm of ventilation operation were adopted for boundary condition of the model to accurately compute THI values inside the mechanically ventilated broiler house. From the BES computation, excess frequency of THI threshold in Jeju city was highest on the assumption that air conditioning equipments were not installed. When general raising density ($39kg\;m^{-2}$) was adopted, total 2,191 hours were exceeded. Excess hours of THI threshold were strongly related to the cumulative air temperature ($R^2=0.87$).

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.