• Title/Summary/Keyword: Heat input model

Search Result 245, Processing Time 0.025 seconds

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Evaluation of Buckling Distortion for the Thin Panel Welded Structure According to Welding Processes (박판 패널 용접부의 용접 기법에 따른 좌굴 변형에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to propose the proper fillet welding process for preventing the buckling distortion in thin panel welded structure. In order to do it, a heat input model for laser hybrid welding process was developed using FEA and experiment. The principal factors controlling the angular distortion and longitudinal shrinkage force caused by FCA and laser hybrid welding were identified as the welding heat input and weld rigidity using FEA. The predictive equations of angular distortion and longitudinal shrinkage force for each welding process were formulated as a function of the principal factors proposed. With the predictive equations, the buckling distortion at the thin panel welded structure with welding process was evaluated and compared using nonlinear buckling analysis and STEM(simplified thermo elastic method). Based on the results, the best way to prevent the buckling distortion at the given welded panel structures was identified as an intermittent FCA welding.

Dynamic modeling of a drying cylinder in Paper Plants (제지공정 내 건조 실린더의 동적 모사)

  • Gwak, Gi-Yeong;Yeo, Yeong-Gu;Kim, Yeong-Gon;Choe, Gyeong-Seok;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.117-126
    • /
    • 2004
  • This paper presents a linear model for heat transfer processes in the drying cylinders and the web in papar mill. The PDE model, functions include steam temperatures, wet temperatures, moisture constents, reel speed and basis weight were derived from operation data. The changes of wet temperatures and moisture contents in the drying cylinders and wets could be described. The Transfer function can be obtained through the state space model derived from the linearized PDE model. Stability of the drying cylinder model for paper plants and analysis of characteristics of process responses for changes in input variables are investigated.

  • PDF

A Study on Dynamic Simulation of a Hybrid Parallel Absorption Chiller (병렬식 하이브리드 흡수식 냉온수기 동특성 시뮬레이션 연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.630-635
    • /
    • 2008
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism have been modeled. Flow discharge coefficients of the valves and the pumps were optimized for the double-effect mode with solar-heated water circulated. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. And the cases of the double mode with and without the solar energy were compared. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the single mode utilizing the solar energy only is not practical. It is suggested to operate the system in the double mode and the flow rate control system adaptive to variable solar energy input has to be developed.

  • PDF

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.

Development of a Dynamic Model for Double-Effect LiBr-$H_2O$ Absorption Chillers and Comparison with Experimental Data. (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-gi;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.109-114
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

  • PDF

Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-Gy;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

Developing a Model to Predict Road Surface Temperature using a Heat-Balance Method, Taking into Traffic Volume (교통량을 고려한 열수지법에 의한 노면온도 예측모형의 구축)

  • Son, Young-Tae;Jeon, Jin-Suk;Whang, Jun-Mun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.30-38
    • /
    • 2015
  • In this study, to improve effectiveness of road management services and the safety of the road in winter, road surface temperature prediction model was developed. We have utilized the existing input data of meteorological data and additional traffic data. This Road surface temperature prediction model was utilizing a Heat-Balance Method additionally considering amount of traffic that produce heat radiation by vehicle-tire friction. This improved model was compared to the based model to check into influence of traffic affecting the road surface temperature. There were verified by comparing the real observed road surface temperature of the third Gyeong-In highway and road surface temperature from the two models. As a result, the error of real observed and the predicted value (RMSE) was found to average $1.97^{\circ}C$. Observed road surface temperature was dramatically affected by the sunlight from 6 a.m. to 2 p.m. and degree of influence decreases after that. The predictive value of the model is lower than the observed value in the afternoon, and higher at night. These results appear due to the shielding of solar radiation caused by the vehicle in the afternoon and at night, the vehicle appeared to cause thermal heat supply.

Behavior of angular distortion in butt joint welding of thin plate structure (맞대기 용접시의 각변형 거동에 관한 연구)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.21-26
    • /
    • 1988
  • The behavior of angular distortion in butt joint wleding of thin plate structure is investigated with an experimental model and partially with a computational model. The experimental model studying the effects of specimene size and degree of restraint on the angular distorion offers a good method for analyzing the behavior of the distrotion. In addition, the distrotion during welding was demonstrated by both experimental measurement and numericla prediciton. The facts evealed in this study are as follows : 1) distrotion angles were changed with variations of specimene wldth. 2) With the restraint, angular distrotion was reduced to 20% to that of free joint. 3) After the restraint being removed, the effect of restraint was also remained. 4) Same heat input per unit thickness caused same amount of distortion. 5) The mode of angular distortion was expected to be changed with expected to be changed with time, i.e. convex movement during heating and concave one during cooling.

  • PDF

Temperature Rise Prediction of 25.8kV 25kA Three-phase GIS Bus Bar (25.8kV 25kA 3상 GIS 모선의 온도상승 예측)

  • Kim, Joong-Kyoung;Hahn, Sung-Chin;Oh, Yeon-Ho;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.894-895
    • /
    • 2007
  • This paper presents coupled analysis between finite element method and analytic technique for predicting temperature rise of 25.8kV 25kA three-phase GIS bus bar. The power losses and temperature distribution of three-phase GIS bus bar model are analyzed by magneto-thermal finite element method. The heat transfer coefficients on the boundaries are analytically calculated by applying Nusselt number considering material constant and model geometry for the natural convection. And these are used as the input data to predict the temperature rise of three-phase GIS bus bar model by coupled magneto-thermal F.E.A. The predicted temperature of 25.8kV 25kA three-phase GIS bus bar model shows good agreement with the experimental data.

  • PDF