• Title/Summary/Keyword: Heat gain

Search Result 349, Processing Time 0.029 seconds

Heating & Cooling Energy Performance Analysis of an Office Building according to SHGC level of the Double & Triple Glazing with Low-e Coating (이중 및 삼중 로이창호의 일사획득에 따른 사무소건물의 냉난방에너지 성능분석)

  • Kim, Hyo-Joong;Park, Ja-Son;Shin, U-Cheul;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.90-95
    • /
    • 2008
  • An SHGC(Solar Heat Gain Coefficient) is a determinant of total flux of solar radiation coming indoor and a critical factor in evaluating heating and cooling load. U-value represents heat loss while SHGC denominates heat gain. Recently, windows with high solar gain, mid solar gain or low solar gain are being produced with the development of Low-E coating technology. This study evaluated changes in energy consumption for heating and cooling according to changes in SHGC when using double-layered Low-E glass and triple layered Low-E glass in relation to double layered clear glass as base glass. An Office was chosen for the evaluation. For deriving optical properties of each window, WINDOW 5 by LBNL, an U.S. based company. and the results were analyzed to evaluate performance of heat and cooling energy on anannual basis using ESP-r, an energy interpretation program. Compared to the energy consumption of the double layered clear glass, the double layered Low-E glass with high solar gain consumed $69.5kWh/m^2,yr$, 9% more than the double layered clear glass in cooling energy. The one with mid solar gain consumed $63.1kWh/m^2,yr$, 1% less than the base glass while the one with low solar gain consumed $57.6kWh/m^2,yr$, 10% less than the base glass. When it comes to tripled layered glass, the ones with high solar showed 2% of increase respectively while the one with mid solar gain and low solar gain resulted 5% and 11% in decrease in energy consumption due to low acquisition of solar radiation. With respect to cooling energy. it was found that the lower the SHGC. the less energy consumption becomes.

  • PDF

Numerical Analysis on Heat Gain of Liquid from Ambient Air with Various Fin Heights and Pitches of Fin-and-Tube Heat Exchanger in Hybrid Solar Collector (핀-튜브 열교환 구조를 갖는 복합집열기에서 핀 높이 및 간격에 따른 공기열 이용 액체 가열 성능에 관한 수치해석 연구)

  • Choi, Hwi-Ung;Fatkhur, Rokhman;Lyu, Nam-Jin;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • Solar assisted heat pump system uses solar thermal energy as a heat source of evaporator of heat pump. So, COP can be enhanced as well as collector efficiency. For improving performance of this system, some research about hybrid solar collector that has fin-and-tube heat exchanger has been conducted. This collector can get a thermal energy from ambient air for liquid heating, so heated liquid can be used as a heat source of evaporator in heat pump even the solar radiation is not enough. In this study, numerical analysis was conducted for confirming heat gain of liquid according to fin height and pitch of fin-and-tube heat exchanger in collector. As a result, higher heat gain was obtained on lower fin height and narrow fin pitch, but the pressure drop also increased with increment of heat gain. Thus the JF factor considering both heat transfer enhancement and pressure drop was investigated and the maximum value was shown when the fin height and pitch were 40mm and 45mm. So it is considered that this installation condition has a highest heat transfer improvement when comparing with pressure drop. However heat gain of liquid at this condition was less than the other installation conditions of fin pitch on same height. Then, after establishing a proper minimum heat gain of liquid, actual production and experiment of collector will be conducted with fin height and pitch showing maximum JF factor and satisfying selected minimum heat gain of liquid on the basis of results of this study.

Thermal Modeling of Quasi-Adiabatic Room and Lighting Fixture for Estimation of Internal Heat Gain by Luminaires (조명기구를 통한 내부획득열 추정을 위한 고단열실 및 조명기구의 열적 모델링)

  • Park, He-Rie;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.1-12
    • /
    • 2012
  • In order to reduce energy consumption and greenhouse gas emission in building domain, thermal insulation of building is being enhanced. In a well insulated and tightened environment, internal heat gain caused by solar radiation, luminaires, electronic appliances and metabolism can be more important to thermal condition of building. This paper presents mathematical/physical models of quasi-adiabtic room and lighting fixtures using heat balance equation and thermal-electric analogy to quantify and modelize the heat gain due to luminaires. Experimental results are used to identify thermal parameters of theoretical models. And simulation results of models using Matlab/Simulink are conducted to verify the models and to investigate the thermal effect of lighting fixtures into quasi-adiabatic room.

Surface Heat Flux and Oceanic Heat Advection in Sendai Bay

  • Yang Chan-Su;Hanawa Kimio
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2006
  • Coastal sea surface temperature (CSST) and meteorological data from January through December 1995 are used to estimate the net surface heat flux and heat content for Sendai Bay. The average annual surface heat flux in the area north of the bay is estimated to be $+35Wm^{-2}$, whereas the southwestern area is estimated to be $+56Wm^{-2}$. Therefore, the net surface heat flux shows a net gain of heat over the whole bay. The largest heat gain occurs near Matsukawaura, where the strong Kuroshio/Oyashio interaction produces anomalously cold SST and wind is more moderate than in other regions of Sendai Bay over most of the year. The lowest heat gain occurs around Tashiro Island, where the temperature difference between air and sea surface is lower and wind is stronger. The heat budget shows that both surface forcing and horizontal advection are potentially important contributors to the seasonal evolution of CSST in the bay. From the A VHRR and SeaWiFS data, it is found that offshore conditions between the bay and Eno Island are different due to the presence of the Ojika Peninsula. It is also shown that the temporal behaviors of SSTs in the bay are closely connected with the air-sea heat flux and offshore conditions.

High Temperature Oxidation Behavior of Cr-Mo Low Alloy Steel According to Atmospheric Pressures in Humid Air (Humid air 분위기로부터 대기 압력에 따른 Cr-Mo 저합금강의 고온 산화 거동)

  • Kwon, Gi-hoon;Park, Hyunjun;Lee, Young-Kook;Moon, Kyoungil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.246-254
    • /
    • 2022
  • The high-temperature oxidation behavior of Cr-Mo steel AISI 4115 in air at different temperatures (600, 850, 950℃) for 120 min was studied by mass gain analysis, phase analysis (optical microscopy, electron probe micro-analysis, x-ray diffraction) and hardness measurement of each iron oxide-phase. The oxidation scales that formed on oxidation process consisted outer layer (Hematite), middle layer (Magnetite) and the inner layer (Chromite). In the case of 850 and 950℃, the oxidation mass gain per unit area of AISI 4115 steel increased according to the logarithmic rate as atmospheric pressure increased. Especially, It has been observed that with an increase in the atmospheric pressure at 600℃, the oxidation mass gain per unit area changed from a linear to logarithmic relationship.

Performance Analysis of an Earth Tube Heat Exchanger(I) -Temperature Variation Characteristics and Heat Exchange Performance on the Mode of Continuous Operation (지중매설관 열교환장치의 성능분석(I) -연속운전실험에서의 온도특성 및 열교환성능-)

  • Kim, Y.B.;Paek, Y.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.436-448
    • /
    • 1996
  • An earth tube soil air heat exchange system was designed, installed and operated as a single pass heat exchanger to utilize the geothermal energy as an natural energy source. This study was undertaken to investigate the potential of the heating and cooling, energy gain, heat exchange efficiency and coefficient of performance of the system. The system consisted of 30m in length and 30cm in diameter polyethylene pipes buried 2m deep in soil. Maximum heating and cooling performance were 2.51㎾ and 1.26㎾ at the air mass rate of 21cmm. Energy gain and coefficient of performance were the function of temperature difference between outside air and soil temperature. They were expressed as Q=0.33$ imes$$Delta T_{max}$+0.134(㎾) for energy gain and COP=0.44$ imes$$Delta T_{max}$+0.178 for coefficient of performance with correlation factor of 0.95. The mean of heat exchange efficiencies was 85.6%.

  • PDF

A Study on the Optimum Design of Plate-Fin Compact Sensible Heat Exchanger for the Heat Recovery of Exhaust Gas (배기열(排氣熱) 회수용(回收用) 평판(平板) - 휜형(形) 밀집형(密集形) 현열(顯熱) 열교환기(熱交換器)의 최적설계(最適設計)에 관한 연구(硏究))

  • Choi, Y.D.;Park, S.D.;Woo, J.S.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.85-98
    • /
    • 1990
  • Method of optimum design of a compact sensible plate-fin heat exchanger for the heat recovery of exhaust gas from the air conditioning space was developed in consideration of the econamics of investment cost and profit according to the installation of heat exchanges. In the counterflow heat exchanger, the frontal area was fixed and the length of heat exchanger was optimized in order to maximize the net gain according to the setting of the heat exchanger. In the cross flow heat exchanger, the size of the exchanger was also optimized to maximize the net gain.

  • PDF

Effects of Heat Treatment on Soybeans With and Without the Gene Expression for the Kunitz Trypsin Inhibitor: Chick Growth Assays

  • Burnham, L.L.;Kim, I.H.;Hancock, J.D.;Lewis, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1750-1757
    • /
    • 2000
  • A total of 864 broiler chicks were used at Kansas State University and the University of Nebraska to determine the effects of heat treatment of two soybean genotypes on the growth performance. The soybeans were Williams 82 variety with (+K) and without (-K) gene expression for the Kunitz trypsin inhibitor. Heat treatment (autoclaving at $121^{\circ}C$ and $1.1kg/cm^2$) was applied for 0, 3, 6, 12, 18, and 24 min, resulting in a $2{\times}6$ factorial arrangement of treatments. Station and station treatment effects occurred, indicating that response in nutritional value of the soybean genotypes to heat treatment varied from year to year and location to location. However, the interactions were in magnitude of response rather than direction of response, with greater reductions in trypsin inhibitor concentrations for the soybeans heat processed at the Nebraska location. Pooled data indicated that -K supported greater (p<0.001) ADG, ADFI and gain/feed than the +K genotype. As the length of heat treatment increased, the ADG, ADFI, and the gain/feed ratio increased for chicks fed both soybean genotypes (p<0.0001). However, heating the -K soybeans resulted in a greater response in ADG, ADFI, and gain/feed than heating the +K soybeans (genotype heat treatment interaction, p<0.001). Pancreatic weights (mg pancreas/g of BW) of chicks fed -K soybeans were reduced compared to those from chicks fed +K (p<0.001). Increasing heat treatment decreased pancreas weights in chicks fed both soybean genotypes (p<0.001). Chicks fed heated soybeans in the Nebraska experiment had lower pancreatic weights than chicks fed heated soybeans in the Kansas experiment (station heat treatment interaction, p<0.0001). Chick growth performance was improved and pancreatic weights decreased by feeding raw -K soybeans versus raw +K soybeans, and by increasing heat treatment of both soybean genotypes. However, the response to heat treatment was not independent of genotype. Both +K and -K soybeans heated for 24 min supported similar ADG, ADFI, gain/feed, and pancreas weights, although chicks fed raw +K soybeans had lower growth performance than chicks fed -K soybeans. In conclusion, raw -K soybeans supported greater growth performance in broiler chicks than raw +K soybeans, although this advantage was lost when both soybean genotypes were heated for 24 min. Heat treatment of +K soybeans supported similar growth performance to heated -K soybeans, even though +K soybeans supported lower rates and efficiencies of gain than -K soybeans when fed raw.

Dust accumulation effect on solar thermal energy systems performance

  • Alsaad, Mohammad A.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.157-165
    • /
    • 2015
  • This research investigates the effect of natural dust accumulation on the glass cover of solar thermal energy conversion systems. Four similar, locally manufactured, flat plate solar collectors are used. All collectors are South oriented with tilt angle of $40^{\circ}$. The glass cover of one collector is kept clean of dust during the experimental period while the second collector is cleaned at the beginning of each month. The third collector is cleaned every two months while the fourth collector is kept un-cleaned throughout the experimental period of four months. The calculated parameters are the solar heat gain rates and the corresponding values of the thermal efficiency. The result of the present work indicates that the percentage of fractional reduction of the useful heat gain rate due to dust accumulation during a period of one and two months is 11.4% and 17.0%, respectively. The percentage decrease of thermal efficiency during the same duration periods is 4.0% and 6.1%, respectively. The percentage of fractional reduction of the useful heat gain rate due to dust accumulation during a period of three and four months is 27.8% and 31.9%, respectively. The percentage decrease of monthly thermal efficiency during the same duration period is 10.2% and 11.3%, respectively.

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the ToP Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Closed - (공동주택의 하절기 개구부 밀폐 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.45-53
    • /
    • 2004
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample houses. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained the brief results as follows. Indoor air temperature at the top floor unit is $1.2\sim2.2^{\circ}C$ higher than that of middle floor unit. The evaluation of the indoor thermal comfort index at each sample rooms reveals notable thermal differences between the two units. Top floor units need more cooling load during the summertime compared to middle floor units. Therefore, solutions to reduce solar Heat gain at top floor units to be considered.