• Title/Summary/Keyword: Heat from Light

Search Result 495, Processing Time 0.025 seconds

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

The Effects of Magnetic Field on TLD Glow Curve (자기장이 열형광선량계의 글로우 곡선에 미치는 영향)

  • Je, Jaeyong;Kang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.415-418
    • /
    • 2013
  • Thermoluminescent dosimeter utilizes the fact that when irradiated specimen is heated up, some part of the absorbed energy is emitted from the specimen as light with longer wavelength. This research aims at analyzing the glow curves of four TLD-100 exposed to a magnetic field and those of other four TLD-100 not exposed to one by treating them with heat and irradiating them, which are commonly used as thermoluminescent dosimeter, in the same condition. As the result of the experiment, regarding the electrons captured by irradiation, some of the electrons of lower traps were combined with positive holes of valence band through the exposure to a magnetic field, and the peak size decreased by 48%. The reduction in the size of the lower traps caused the TLD-100 exposed to a magnetic field to display a low level of dose. In addition, low traps estimated activation energies are 1.6 eV and 1.5 eV.

Effect of EuO$_3$addition on hydrothermal stability of t-ZrO$_2$/Al$_2$O$_3$composites (t-ZrO$_2$/Al$_2$O$_3$복합체 상 안정성에 대한 Eu$_2$O$_3$첨가 효과)

  • 이득용;김대준;최성갑;이명현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.233-238
    • /
    • 2000
  • t-$ZrO_2/Al_2O_3$composites having a superior biocompatability and phase stability were prepared by adding 0~4 mol% of $Eu_2O_3$and sintered for 1 h at $1600^{\circ}C$ to evaluate phase stability, chromaticity and mechanical properties of the composites. No tetragonal to monoclinic phase transformation was observed for the composites containing $Eu_2O_3$after heat treatment for 20 h at $180^{\circ}C$ under 3.5 MPa water vapor pressure condition. As $Eu_2O_3$content increased, the color of the composites was changed from a slight white ivory to a light pink. The strength and the fracture toughness of the composites containing $Eu_2O_3$were above 620 MPa and 7.6 MPa.$m^{1/2}$, respectively, when $Eu_2O_3$was added up to 3 mol%.

  • PDF

STUDY ON A EFFECTIVE THERMAL CONDUCTIVITY OF THE CFRP COMPOSITE STRUCTURE BY A SIMPLIFIED MODEL (모델 단순화에 의한 CFRP 복합 구조물의 유효 열전도율 추출 방법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.63-69
    • /
    • 2015
  • The thermal balance test in vacuum chamber for satellite structures is an essential step in the process of satellite development. However, it is technically and economically difficult to fully replicate the space environment by using the vacuum chamber. To overcome these limitations, the thermal analysis through a computer simulation technique has been conducted. The CFRP composite material has attracted attention as satellite structures since it has advantages of excellent mechanical properties and light weight. However, the nonuniform nature of the thermal conductivity of the CFRP structure should be noted at the step of thermal analysis of the satellite. Two different approaches are studied for the thermal analyses; a detailed numerical modeling and a simplified model expressed by an effective thermal conductivity. In this paper, the effective thermal conductivities of the CFRP composite structures are extracted from the detailed numerical results to provide a practical thermal design data for the satellite fabricated with the CFRP composite structure. Calculation results of the surface temperature and the thermal conductivities along x, y, z directions show fairly good agreements between the detailed modeling and the simplified model for all the cases studied here.

Application of Natural Dyes for Developing Colored Wood Furniture (III) - Prevention of Discoloration of Chestnut Wood by Natural Dyes - (색채 목가구 개발을 위한 천연염료의 이용에 관한 연구(제3보) - 천연염색 밤나무 목재의 변색 방지 -)

  • Moon, Sun-Ok;Kim, Chul-Hwan;Kim, Gyeong-Yun;Jung, Ho-Gyeong;Shin, Tae-Gi;Kim, Jong-Gab;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.79-87
    • /
    • 2007
  • This study investigated the effects of lacquer-finishing to prevent discoloration of coloring chestnut wood coated with natural dyes from deteriorating factors such as lights (indoor, 500 lux and outdoor, 50,000~70,000 lux), acid, alkali, and heat through measurement of color difference. Lacquer-finishing coating contributed to protection of intrinsic color of the natural dyeing woods in spite of severe treatment. In particular, dyeing liquor with alkali pH played a great role in prevention of light discoloration.

Finishing of Interior Fabric Using Soluble Micro-fiber and low melting Yarn (용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 가공)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.13 no.2
    • /
    • pp.78-86
    • /
    • 2009
  • When scouring and contraction finishing at $90^{\circ}C$ using Relaxer or Rotary Washer contraction and weight loss ratio in warp and weft directions were excellent. Also surface state of fabric after drying or sanding treatment was excellent without crease. Low melting polyester fabric showed a complete melting bond by heat setting(P/S) at above $160^{\circ}C$. The alkali hydrolysis reaction of polyester showed the breakpoint in the weight loss behavior test, polyester yarn showed a breakpoint ranging from 25% to 28%. This is due to the difference of the hydrolysis rate between regular polyester and soluble polyester. Initially the soluble polyester was eluted and micro-fibrillized 5 times faster than a regular polyester. At a later time, a regular polyester was reduced weight to impart a proper flexibility and drape property to the fabric. As a result of surface sanding finishing, the surface of interior fabric showed a surface state most stabilized when using Mesh No. 220 in mono 0.2d after elution finishing. When the rotation direction of sanding roller was pro-, pro-, pro-, and retro-direction, a directional effect of tuft was not shown, a writing effect as suede was exhibited and a surface state was even. Sublimation fastness was 3-4 class for polyester and 2-4 class for nylon. Light fastness 3-4 class after lapse of 100 hours and 2-4 class after lapse of 160 hours. Abrasion fastness was 3-4 class on wet and 4-5 class on dry Laundry fastness was 2-4 class. As such, the abrasion fastness is slightly reduced upon wetting and the use thereof for interior is excellent, whereas laundry fastness is slightly lowered.

Quality Changes of Fresh Green Pepper Paste during Storage (생청고추 페이스트의 저장 과정 중 품질 변화)

  • 정재홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.216-220
    • /
    • 1998
  • To maintain flavor and color of fresh green pepper, the fresh green pepper paste was directly prepared from fresh green pepper. The characteristic of fresh green pepper paste and processing properties were investigated, and the effect of salt, glucose, acid and heat on product quality during processing and storage were studied. After the processed fresh green pepper paste was stored at 3$0^{\circ}C$ and 5$^{\circ}C$ without light for 6 months. The weight and pH of pericarp were 86% of total and 4.5~5.0, respectively. Addition of 10% salt, 5% glucose, and 0.1 dl-malic acid to the fresh green pepper paste maintain flavor of fresh green pepper could be preserved for 6 months at 5$^{\circ}C$. Panel test showed fresh green pepper paste which was made of 10% salt, 5% glucose and 0.1% dl-malic acid to the fresh green pepper was quite acceptable.

  • PDF

Study on Leaching Behavior for Recovery of Ga Metal from LED Scraps (LED 공정스크랩으로부터 Ga 회수를 위한 침출 거동 연구)

  • Park, Kyung-Soo;Swain, Basudev;Kang, Lee Seung;Lee, Chan Gi;Uhm, Sunghyun;Hong, Hyun Seon;Shim, Jong-Gil;Park, Jeung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.414-417
    • /
    • 2014
  • LED scraps consisting of highly crystalline GaN and their leaching behavior are comprehensively investigated for hydro-metallurgical recovery of rare metals. Highly stable GaN renders the leaching of the LED scraps extremely difficult in ordinary acidic and basic media. More favorable state can be obtained by way of high temperature solid-gas reaction of GaN-$Na_2CO_3$ powder mixture, ball-milled thoroughly at room temperature and subsequently oxidized under ambient air environment at $1000-1200^{\circ}C$ in a horizontal tube furnace, where GaN was effectively oxidized into gallium oxides. Stoichiometry analysis reveals that GaN is completely transformed into gallium oxides with Ga contents of ~73 wt%. Accordingly, the oxidized powder can be suitably leached to ~96% efficiency in a boiling 4 M HCl solution, experimentally confirming the feasibility of Ga recycling system development.

Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition (유도결합 플라즈마 화학기상증착법에 의해 활성화된 탄소원자를 이용한 Ni/SiO2/Si 기판에서 그래핀 성장)

  • Nang, Lam Van;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.