• 제목/요약/키워드: Heat fluxes

검색결과 367건 처리시간 0.024초

무촉매 환원법이 적용된 응용 재연소 방법에 의한 NOx와 CO의 저감 효과 (The Effects of Advanced Reburning with SNCR on NOx and CO Reduction)

  • 이창엽;김동민;백승욱
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.788-795
    • /
    • 2006
  • From the view of the environmental protection against the use of fossil fuels, the great of efforts have been exerted to find an effective method which is not only pollutant reduction but also high thermal efficiency. Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the hybrid effects of reburning and selective non-catalytic reaction (SNCR) on $NO_x/CO$ reduction from oxygen-enriched LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and $NO_x$ generation were observed to increase by oxygen-enriched combustion, but due to its hybrid effects of reburning and SNCR, $NOx/CO$ concentration in the downstream has considerably decreased.

Terra/MODIS 자료를 이용한 연안 대기경계층의 연직구조 (Vertical Structure of the Coastal Atmospheric Boundary Layer Based on Terra/MODIS Data)

  • 김동수;권병혁
    • 대기
    • /
    • 제17권3호
    • /
    • pp.281-289
    • /
    • 2007
  • Micrometeorlogical and upper air observation have been conducted in order to determine the atmospheric boundary layer depth based on data from satellite and automatic weather systems. Terra/MODIS temperature profiles and sensible heat fluxes from the gradient method were used to estimate the mixed layer height over a coastal region. Results of the integral model were in good agreement with the mixed layer height observed using GPS radiosonde at Wolsung ($35.72^{\circ}N$, $129.48^{\circ}E$). Since the variation of the mixed layer height depends on the surface sensible heat flux, the integral model estimated properly the mixed layer height in the daytime. The buoyant heat flux, which is more important than the sensible heat flux in the coastal region, must be taken into consideration to improve the integral model. The vertical structure of atmospheric boundary layer can be analyzed only with the routine data and the satellite data.

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

TRANSIENT CHF PHENOMENA DUE TO EXPONENTIALLY INCREASING HEAT INPUTS

  • Park, Jong-Doc;Fukuda, Katsuya;Liu, Qiusheng
    • Nuclear Engineering and Technology
    • /
    • 제41권9호
    • /
    • pp.1205-1214
    • /
    • 2009
  • The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of high subcoolings for quasi-steady-state and transient maximum heat fluxes. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. Steady-state CHFs were divided into three regions for lower, intermediate and higher subcooling at pressures resulting from HI, transition and HSN, respectively. HSN consistently occurred in the transient boiling CHF conditions that correspond to a short period. It was also found that the transient boiling CHFs gradually increased, then rapidly decreased and finally increased again as the period became shorter.

타원혼합 이차모멘트 모델을 사용한 난류 자연대류 해석 (COMPUTATION OF TURBULENT NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE)

  • 최석기;한지웅;김성오;이태호
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper a computation of turbulent natural convection in enclosures with the elliptic-blending based differential and algebraic flux models is presented. The primary emphasis of the study is placed on an investigation of accuracy of the treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for the turbulent natural convection flows. The turbulent heat fluxes in this study are treated by the elliptic-blending based algebraic and differential flux models. The previous turbulence model constants are adjusted to produce accurate solutions. The proposed models are applied to the prediction of turbulent natural convections in a 1:5 rectangular cavity and in a square cavity with conducting top and bottom walls, which are commonly used for validation of the turbulence models. The relative performance between the algebraic and differential flux model is examined through comparing with experimental data. It is shown that both the elliptic-blending based models predict well the mean velocity and temperature, thereby the wall shear stress and Nusselt number. It is also shown that the elliptic-blending based algebraic flux model produces solutions which are as accurate as those by the differential flux model.

열진공 시험용 비접촉식 우주 열환경 모사 장치의 해석적 검토 (Analytical Investigation of In-direct Heater to Simulate Space Thermal Environment for Thermal Vacuum Test)

  • 백철우;신소민;오현웅
    • 한국항공우주학회지
    • /
    • 제40권2호
    • /
    • pp.178-183
    • /
    • 2012
  • 위성체의 열진공 시험에는 우주 열환경을 모사하기 위하여 직접 방열판 표면에 열을 공급하는 접촉식 히터와 일정 거리를 두고 간접적으로 복사에 의해 열을 공급하는 비접촉식 히터가 사용된다. 이는 태양 복사 뿐 아니라 지구의 적외선 및 알베도(Albedo)를 모사하며, 열환경 시험 요구에 따라 정의된 온도 조건에 필요한 열을 공급하기도 한다. 일반적으로 접촉식 히터 사용이 불가할 경우 비접촉식 히터를 사용하게 되는데, 이때 복사에 의한 열전달량을 고려하여 적절한 히터파워를 산정하고 히터 미작동시 방열판과 챔버 슈라우드와 열교환에 있어 간섭이 없도록 히터의 위치를 설정하는 것이 필요하다. 본 논문은 열해석상용 프로그램인 SINDA를 이용하여 비접촉식 히터의 최적화 열설계를 수행하였으며, 이를 통해 시험시 유효한 설계값을 도출하였다.

대구지역 인공열의 시공간적 분포 추정에 관한 연구 (Estimation of the Temporal and Spatial Distribution of Anthropogenic Heat in Daegu)

  • 안지숙;김해동;홍정혜
    • 한국환경과학회지
    • /
    • 제11권10호
    • /
    • pp.1045-1054
    • /
    • 2002
  • Urban atmospheric conditions are usually settled as warmer, drier and dirtier than those of rural counterpart owing to reduction of green space and water space area heat retention in surfaces such as concrete and asphalt, and abundant fuel consumption. The characteristics of urban climate has become generally known as urban heat island. The purpose of this study is to investigate the temporal and spatial distribution of the heat emission from human activity, which is a main factor causing urban heat island. In this study, the anthropogenic heat fluxes emitted from vehicles and constructions are estimated by computational grid mesh which is divided by 1km $\times$ 1km. The anthropogenic heat flux by grid mesh can be applied to a numerical simulation model of the local circulation model. The constructions are classified into 9 energy-consumption types - hospital, hotel, office, department store, commercial store, school, factory, detached house and flat. The vehicles classified into 4 energy-consumption types - car, taxi, truck and bus. The seasonal mean of anthropogenic heat flux around central Daegu exceeded $50 W/m^2$ in winter. The annual mean anthropogenic heat flux exceeded $20 W/m^2$. The values are nearly equivalent to the anthropogenic heat flux in the suburbs of Tokyo, Japan.

Thermoexcel-E 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성 (Heat Transfer Characteristics of Spray Cooling Up to Critical Heat Flux on Thermoexcel-E Enhanced Surface)

  • 이요한;홍광욱;이준수;정동수
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.373-380
    • /
    • 2016
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater of $9.53{\times}9.53mm$ at $36^{\circ}C$ in a pool, a smooth flat surface and Thermoexcel-E surfaces are used to see the change in HTCs and CHFs according to the surface characteristics and FC-72 is used as the working fluid. FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface. HTCs are taken from $10kW/m^2$ to critical heat flux for all surfaces. Test results with Thermoexcel-E showed that CHFs of all enhanced surface is greatly improved. It can be said that surface form affects heat transfer coefficient and critical heat flux.