• Title/Summary/Keyword: Heat flow simulation

Search Result 847, Processing Time 0.032 seconds

Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow (불균일한 풍속분포에 따른 응축기의 열전달 성능 변화)

  • Lee, Won-Jong;Jeong, Ji Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

A Numerical Simulation of Heat and Fluid Flow for Predicting the Effect of Passage Arrangement in Automotive Heat Battery (자동차용 열전지에서 유로배열 효과 예측을 위한 열유동 수치묘사)

  • Lee, K.S.;Kwon, J.W.;Baek, C.I.;Song, Y.K.;Han, C.S.;Kim, D.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.64-73
    • /
    • 1995
  • A numerical simulation of heat and fluid flow for predicting the effect of passage arrangement in automotive heat battery has been performed. The system is assumed to be a two-dimensional laminar flow and isothermal boundary is applied to the surface of the latent heat storage vessel. In the case of ideal heat battery the flow rate into each flow passage is evenly distributed. The various models are considered in the view of pressure drop and bulk temperature. The effects on the efficiency of the heat battery are examined by varying geometrical factors such as flow passage clearance, length of a inlet and outlet tank and the length of a latent heat storage vessel. The flow clearance is a very important -factor on the efficiency of a heat battery. As the flow passage clearance becomes narrow, the flow distribution becomes uniform and the bulk temperature increases, however the pressure drop is large. Therefore, optimal flow passage clearance has to be chosen. The present work can be used in optimizing heat battery efficiency.

  • PDF

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

Numerical simulation of slit wall effect on the Taylor vortex flow with radial temperature gradient

  • Liu, Dong;Chao, Chang-qing;Zhu, Fang-neng;Han, Xi-qiang;Tang, Cheng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Numerical simulation was applied to investigate the Taylor vortex flow inside the concentric cylinders with a constant radial temperature gradient. The reliability of numerical simulation method was verified by the experimental results of PIV. The radial velocity and temperature distribution in plain and 12-slit model at different axial locations were compared, and the heat flux distributions along the inner cylinder wall at different work conditions were obtained. In the plain model, the average surface heat flux of inner cylinder increased with the inner cylinder rotation speed. In slit model, the slit wall significantly changed the distribution of flow field and temperature in the annulus gap, and the radial flow was strengthen obviously, which promoted the heat transfer process at the same working condition.

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

Heat flow Analysis of Heat Sink Using the Computational Simulation (전산모사를 이용한 히트싱크의 열 유동 해석)

  • Lim Song Chul;Chang Si Young;Kim Hyon Tae;Lee Dong Heon;Kang Kae Myung
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.522-528
    • /
    • 2004
  • Heat analysis of the plate type and wave type heat sink were carried out by using computational simulation. The heat resistance and air flow of two heat sink models were analysed according to natural and forced convection condition and positions of fan. When a fan was at the position of z-axis and y-axis in forced convection, the heat resistances of plate type heat sink were $0.17^{\circ}C/W$, and $0.28^{\circ}C/W$ respectively. In the case of wave type heat sink, they were $0.18^{\circ}C/W$ and $0.53^{\circ}C/W$. As the air flow velocities were averagely $0.386\;m/s\~3.269\;m/s$, air flow velocity of plate type heat sink was faster than that of wave type. In this experiment, it was observed that the plate type heat sink showed a good ability of heat radiation comparing with wave type one.

Physical Model and Numerical Simulation Approach of Steam Flow and Heat Transfer of Pannier-arrangement Condensers

  • Hou, Pingli;Yu, Maozheng
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.109-116
    • /
    • 2004
  • Through analysing the influence of steam flow direction on the liquid formation and motion behavior in the condenser shell side, the physical model for existing numerical simulation program of condenser is improved by introducing the correlations for flow resistance and condensation heat exchange coefficient in which the influences of steam flow direction are considered according to the available experimental data. Thus a more suitable and general condenser simulation approach is presented and a new condenser calculation program is developed. With the experimental data of a pannier- arrangement experimental condenser, the adaptability of the new condenser simulation approach is verified. General characteristics of this type of condenser are also revealed.

  • PDF

3 Dimensional Numerical Simulation for the Closed Loop Heat Pump System Using TOUGH2 (TOUGH2를 이용한 폐쇄형 지열펌프 시스템의 3차원 모델링 연구)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.36-39
    • /
    • 2006
  • To evaluate the effect of groundwater flow on the outlet temperature of a geothermal heat pump, 3 dimensional numerical simulations are performed considering both groundwater flow and pipe flow in the U-tube using TOUGHS, The present study involved the following 4 simulation cases (1) no groundwater flow, (2) slow groundwater flow (hydraulic conductivity: $1.0{\times}10^{-9}m/s)$, (3) fast groundwater flow (hydraulic conductivity, $1.0{\times}10^{-7}m/s$), and (4) groundwater flow varying with the depth (hydraulic conductivity: $1.0{\times}10^{-7}-1.0{\times}10^{-10}m/s$). The effect of groundwater flow on the outlet temperature is significant where hydraulic conductivity of aquifer is $1.0{\times}10^{-7}m/s$. Where hydraulic conductivity of aquifer is $1.0{\times}10^{-10}m/s$, however, that effect is negligible.

  • PDF

Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel (요철이 설치된 회전하는 채널 내부의 유동 및 열전달의 큰에디모사)

  • Ahn, Joon;Choi, Hae-Cheon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.193-198
    • /
    • 2003
  • A gas turbine blade has an internal cooling passage equipped with ribs, which can be modeled as a ribbed channel. We have studied a flow inside a ribbed channel using large eddy simulaton (LES) with a dynamic subgrid-scale model. The simulation results are compared with the experimental ones. The turbulence intensity and local heat transfer near the rib have not been well captured by the conventional Reynolds averaged Navier-Stokes simulation (RANS). However, these variables obtained by the present LES agree well with those from experiments. From the instantaneous velocity and temperature fields, we explain the mechanisms responsible for the local peaks in the heat transfer distribution along the channel wall. We have also investigated the effect of rotation on the flow and heat transfer in the ribbed channel.

  • PDF

A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method (미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법)

  • Lee, Sang-Hyuk;Kim, Joo-Han;Lee, Na-Ri;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF