• Title/Summary/Keyword: Heat extrusion

Search Result 130, Processing Time 0.022 seconds

Analysis of Tube Extrusion Process Conditions Using Mg Alloy for Automotive Parts (자동차 부품용 마그네슘 합금 관재 압출공정조건 분석)

  • Park, Chul Woo;Kim, Ho Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1675-1682
    • /
    • 2012
  • Weight reduction is increasingly being considered very important in light of air pollution and the exhaustion of resources. As a result, many automotive components are being replaced by Al and Mg alloys, and studies are increasingly focusing on the same. However, the use of Mg alloys is limited because they have higher material cost and lower productivity owing to the difficult forming conditions compared with Al alloys. In this study, the tube extrusion process conditions of an automotive bumper back beam were analyzed using FEA. Material tests were performed to determine the properties, and experiments and analyses for a simple shape were performed to define the data for heat generation during plastic deformation. Then, the analyses of the product were carried out by considering various temperatures and ram speeds. The conditions were then established, and a product without surface defects was extruded successfully.

Comparison of inclination and vertical changes between single-wire and double-wire retraction techniques in lingual orthodontics

  • Hung, Bui Quang;Hong, Mihee;Yu, Wonjae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.50 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Objective: The Heat Induction Typodont System (HITS), used in some recent studies, has a distinct advantage over previous tooth movement simulation methods. This study aimed to compare inclination and vertical changes between the single-wire and double-wire techniques during en masse retraction with different lengths of lever arms in lingual orthodontics using an upgraded version of the HITS. Methods: Duet lingual brackets, which have two main slots, were used in this study. Forty samples were divided into four groups according to the length of the lever arm (3-mm or 6-mm hook) and the retraction wire (single-wire or double-wire). Four millimeters of en masse retraction was performed using lingual appliances. Thereafter, 3-dimensional-scanned images of the typodont were analyzed to measure inclination and vertical changes of the anterior teeth. Results: Incisor inclination presented more changes in the single-wire groups than in the double-wire groups. However, canine inclination did not differ between these groups. Regarding vertical changes, only the lateral incisors in the single-wire groups presented significantly larger values than did those in the double-wire groups. Combining the effect of hook lengths, among the four groups, the single-wire group with the 3-mm hook had the highest value, while the double-wire group with the 6-mm hook showed the least decrease in crown inclination and extrusion. Conclusions: The double-wire technique with an extended lever arm provided advantages over the single-wire technique with the same lever arm length in preventing torque loss and extrusion of the anterior teeth during en masse retraction in lingual orthodontics.

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

Effects of Drawing Parameters on Mechanical Properties in High Frequency Induction Welded Tubes of BAS111 Alloy for Heat-exchangers (열교환기용 BAS111합금 고주파유도용접관에서 인발조건이 기계적 특성에 미치는 영향)

  • 국진선;김낙찬;송중근;전동태
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.65-72
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS111 welded tubes. The BAS111 aluminium alloy tubes with 25.4mm in external diameter and 1.5mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle 6.8$^{\circ}$ and power input 50㎾. With increasing the reduction of area (1.6, 5.8, 11.5, 14.2, 18.5, 22.5%) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction was estimated about 15% because of the work hardening of welds.

Developing Integrated Compressor Cooler System of 3D Printing Nozzle (3D 프린팅 노즐의 일체형 압출기 쿨링 시스템 개발)

  • Son, Ji-Hwan;Park, Hyun-Woo;Ha, Dong-Woo;Lee, Chang-U;Kim, Jin-Su;Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In a large 3D printer when the cooler, which cools the filament, acts in one direction, the area directly exposed to the cooling is cooled to the proper temperature. However, the cooling effect on the opposite area is relatively less. It was found in experiments that filaments with a thickness of over 2 mm exhibit the cooling problem in one directional cooling. Consequently, cooling was performed to prevent the flow-down and to produce firm support leading to an improvement in product quality in extrusion. Further, the lay-up of a 3D printer with five guides combined with a duct was achieved. Analysis showed that the improvement in the cooling effect enables stable extrusion and lay-up and thus, reduces fabrication time.

Deformation Behavior of a Wrought Mg-Zn-RE Alloy at the Elevated Temperatures (Mg-Zn-RE 합금 가공재의 온간 기계적 특성)

  • Shin, Beomsoo;Kim, Yule;Bae, Donghyun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • This study has been investigated the deformation behavior of a hot-extruded Mg-Zn-RE (RE: rare earth elements) alloy containing $Mg_{12}$(RE) particles at the elevated temperatures. The particles are intrinsically produced by breaking the eutectic structure of the alloy during the hot-extrusion process. The grain size of the extruded Mg-Zn-RE alloy developed via dynamic recrystallization is around $10{\mu}m$. Under the heat treatment at 200o C up to 48 hr, no change has been observed on the microstructure and mechanical properties due to the pinning effect of the thermally stable particles. Under the tensile test condition in the initial strain-rate range of $1\times10^{-3}s^{-1}$ and the temperature range up to $200^{\circ}C$, the alloy shows yield strength of 270 MPa and elongation to failure around 9% at room temperature and yield strength of 135 MPa at $200^{\circ}C$. Furthermore, although the alloy contains large amount of the second phase particles around 15%, it shows excellent hot-workability possibly due to the presence of the thermally stable interface between the particles and the matrix.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Abn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.453-457
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Ahn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.48-51
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

  • PDF

Thermal Characteristics and Cooling Experiments and Analysis of Finite Elements in the Discharge of Lithium-Ion Batteries (리튬이온 배터리 방전 시 발열 특성 및 냉각 실험과 유한요소 해석)

  • Seokil Kim;Shin You Kang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Lithium-ion batteries are predominantly employed in electric vehicles and energy storage devices, offering the advantage of high energy density. However, they are susceptible to efficiency degradation when operated at high temperatures due to their sensitivity to the external environment. In this study, we conducted experiments using an indirect cooling method to prevent thermal runaway and explosions in lithium-ion batteries. The results were validated by comparing them with heat transfer simulations conducted through a commercial finite element analysis program. The experiments included single-cell exothermic tests and cooling experiments on a battery pack with 10 cells connected in series, utilizing 21700 lithium-ion batteries. To block external temperature influences, the experimental environment featured an extrusion method insulation in the environmental chamber. The cooling system, suitable for indirect cooling, was constructed with copper tubes and pins. The heat transfer analysis began by presenting a single-cell heating model using commercial software, which was then employed to analyze the heating and cooling of the battery pack.