• Title/Summary/Keyword: Heat extrusion

Search Result 130, Processing Time 0.027 seconds

Phenomenological Analysis of the Effects of Die Cooling and Extrusion Speed on the Extrusion of 7075 alloy (금형 냉각과 압출 속도가 7075 합금 압출에 미치는 영향에 대한 현상학적 분석)

  • Seong, S.G.;Kang, H.J.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.185-190
    • /
    • 2021
  • The extrusion experiments using the 7075 aluminum billet have been performed to investigate the effects of die cooling and ram speed on the occurrence of surface defects on the extrudate. The purpose of die cooling was to suppress overheating of the extrudate at the moment of extrusion. In the present die cooling system, liquid nitrogen has been injected in to the die and sprayed to the surface of extrudate. Ram speed was either kept or varied in the range of 1.1~1.7 mm/sec. throughout one extrusion shot to check the occurrence of surface defects. Every extrusion started at a ram speed of 1.25 mm/sec. The temperature of extrudate was measured using a laser thermometer. The 7075 billet of 180 mm in diameter and 550 mm in length was preheated at 390℃ and extruded to get a single plate of 8000 mm in length, 150 mm in width and 10 mm in thickness. Each extrudate was checked by eye to find the surface defects. The microstructures were obtained in the specimen cut from each corner of the extrudate using the EBSD micrographs.

The Effect of Die Cooling on the Surface Defects of the Aluminum 7075 Extrudates (알루미늄 7075 합금의 압출에서 금형 냉각이 압출재의 표면 결함에 미치는 영향)

  • S.Y., Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.319-326
    • /
    • 2022
  • Direct extrusions of an aluminum 7075 alloy were carried out using 1500 ton machine with and without die cooling system. Cooling of extrusion die has been performed by the flow of liquid nitrogen and controlled by laser thermometer. Billet was 180 mm in diameter and 500 mm in length. The preheating temperatures of billet, container and die were 390℃, 400℃ and 450℃, respectively. Ram speed was kept with 1.25 mm/sec first. The change of ram speed was carried out during extrusion according to the observation of surface defects such as crack or tearing. Extrudates of 8.3 m in length, 100 mm in width and 15 mm in thickness were obtained to observe and analyze surface defects by optical microscopy and EBSD (Electron BackScattered Diffraction). In case of extrusion without die cooling cracks on the surface and tearing in the corner of extrudate occurred in the middle stage and developed in size and frequency during the late stage of extrusion. At the extrusion with die cooling the occurrence of defects could be suppressed on the most part of extrudate. EBSD micrographs showed that cracks and tearings have been resulted from the same origin. Surface defects were generated at the boundaries of grains formed by secondary recrystallization due to surface overheating during extrusion.

Effect of process type and heat treatment conditions on warm hydroformability (온간액압성형특성에 미치는 압출제조공정과 열처리 조건의 영향)

  • Yi, H.K.;Kwon, S.O.;Park, H.K.;Yim, H.S.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.132-135
    • /
    • 2007
  • In this study, hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes at different extrusion type were investigated. For the investigation, as-extruded, full annealed and T6-treated Al6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and $250^{\circ}C$. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were estimated by tensile test. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube at $250^{\circ}C$. As for the heat treatment, hydroformability of full annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was post-T6 treated after hydroforming of pre- full annealed tube. However, hydroformed part using T6 pre treated tube represents high strength and low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is cost-effective. Hydroformability of Al6061 tube showed similar value for both extrusion types. But flow stress of seam tube showed $20{\sim}50MPa$ lower value.

  • PDF

Process analysis and prediction of die strength of condenser tube with 12 holes in hot extrusion (12홀 컨덴서 튜브의 열간 압출 공정해석 및 금형의 강도예측)

  • Lee S. H.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.436-439
    • /
    • 2005
  • Condenser tube has been used as a component of heat exchanger in automobile and air conditioning apparatus. In this paper, porthole die extrusion that is advantageous to form long hollow section tube is analyzed by direct extrusion of condenser tube with 12 holes. A study on extrusion process is performed through the 3D FE simulation at non-steady state and extrusion experiments. Especially, weldability, extrusion load and die defects were estimated try FE-simulation. This study present the redesigned die of direct extrusion in consideration of the results obtained from FE-analysis.

  • PDF

Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell (Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계)

  • Lee, Sang-Ho;Lee, Jung-Min;Jo, Hyung-Ho;Jo, Hoon;Kim, Mun-Bae;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.

A Study On the $Conform^{TM}$ Process of Al 1100 Alloy (Al 1100 합금의 $Conform^{TM}$ 공정에 관한 연구)

  • Kim, S.H.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.329-332
    • /
    • 2006
  • $Conform^{TM}$, a continuous extrusion forming process can produce a variety of very long extruded products such as aluminum alloyed wires, strips and profiles, hollow sectioned tubes, coated wires used in the current forming industry. This process has some advantages like as superiority of pre-heating free, availability of high extrusion ratio and continuous forming without stroke limit. But it is still difficult to analyze the realistic model of the process. In this study the analysis using two-dimensional model of $Conform^{TM}$ process together with several parametric investigations on the heat transfer are carried out by FEA code DEFORM $^{TM}2D$. In spite of simple model the results of analysis shows a good guidance to design the real process.

  • PDF

A study on the forming process and formability improvement of clutch gear for vehicle transmission (자동차 트랜스미션용 클러치 기어의 성형 공법 및 성형성 향상에 관한 연구)

  • Lee K. O.;Kang S. S.;Kim J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.184-187
    • /
    • 2005
  • Forging process is one of the forming process and is used widely in automobile parts and manufacture industry. Especially the gears like spur gear, helical gear, bevel gear were produced by machine tool, but recently they have been manufactured by forging process. The goal of this study is to study forming process with data obtained by comparison between forward extrusion and upsetting simulation results and formability improvement by various heat treatment conditions. By analysis data of 3D FEM by upsetting and forward extrusion forming, the forming process of clutch gear develops using data based on 3D FEM analysis. Through tensile test using specimens by various heat treatment conditions, the optimal heat treatment condition is obtained by comparison the results of tensile test.

  • PDF

Hydroformability and mechanical properties of A16061 tubes on different extrusion type (알루미늄 6061 압출재의 제조공정에 따른 온간액압성형성과 기계적 특성 연구)

  • Yi, H.K.;Jang, J.H.;Kwon, S.O.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.254-257
    • /
    • 2007
  • In this study, hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes at different extrusion type were investigated. For the investigation, as-extruded, full annealed and T6-treated Al 6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and $200^{\circ}C$. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were estimated by tensile test. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube at $200^{\circ}C$. As for the heat treatment, hydroformability of full annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was post-T6 treated after hydroforming of pre- full annealed tube. However, hydroformed part using T6 pre treated tube represents high strength and low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is cost-effective. Hydroformability of Al6061 tube showed similar value for both extrusion types. But flow stress of seam tube showed $20{\sim}50MPa$ lower value.

  • PDF

Softening-hardening Mechanisms in the Direct Hot-extrusion of Aluminium Compacts

  • Zubizarreta, C.;Arribas, I.;Gimenez, S.;Iturriza, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.718-719
    • /
    • 2006
  • Two different commercial aluminium powder grades have been densified by direct hot extrusion. The extrusion temperature was $425^{\circ}C$, with an extrusion ratio of 1:16. Prior to extrusion, some green compacts were pre-sintered ($500^{\circ}C$). The evolution of the extrusion load during the process and the hardness of the final products have been investigated. Additionally, microstructural characterization by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD) was carried out. The obtained results evidence grain refinement. Additionally, inter-metallic precipitation, dynamic recovery and geometric dynamic recrystallization take place depending on some process variables, powder composition, heat treatment, strain $\ldots$

  • PDF

The Influence of Extrudate Microstructure of Die Cooling Using $N_2$ gas in Hot Extrusion for Al 6061 Alloy (Al 6061의 열간압출시 질소금형냉각이 압출재의 미세조직에 미치는 영향)

  • Ko, D.H.;Yee, S.H.;Ko, D.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.50-53
    • /
    • 2008
  • It's so difficult to obtain simultaneously both product quality and improvement of the productivity of which products are in hot aluminum extrusion process. But significant improvements in productivity and extrudate quality result from die cooling system using nitrogen gas injection during aluminum hot extrusion. These benefits are due primarily to cooling effect nitrogen gas and removal of excess heat in the extrudate temperature. This investigation is carried out hot extrusion experiment, also compared cooling system with non-cooling system to inspect cooling effects on hot aluminum extrusion. The purpose of this investigation is estimated the grain growth fur the extrudate quality, and the ram speed for the improvement of the productivity.

  • PDF