• Title/Summary/Keyword: Heat exchanger in water

Search Result 630, Processing Time 0.024 seconds

Performance Evaluation of Open-Loop Ground Water Heat Pump system (개방형 지열히트펌프 시스템의 성능평가)

  • Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.9-14
    • /
    • 2006
  • Open loop or ground water heat pump systems are the oldest of ground-source systems. Standing column wells can be used as highly efficient ground heat exchanger in geo-thermal heat pump systems, where hydrological and geological conditions are suitable. These systems require some careful considerations for well design, ground water flow, heat exchanger selection etc This paper describes 9round water temperature variations, performances in heat ins and cool ing mode and the results of ground water analysis.

  • PDF

Effects of Pulsating Flow on Evaporation of Refrigerant in a Plate Heat Exchanger (판형 열교환기에서 맥동유동이 냉매의 증발에 미치는 영향)

  • Kang Byung-Ha;Jeong Il-Kwon;Kim Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.627-634
    • /
    • 2006
  • Evaporation heat transfer characteristics by pulsating flow in a plate heat exchanger have been investigated experimentally in this study. R-l34a is evaporated by receiving heat from the hot water in the plate heat exchanger. The pulsating frequency in refrigerant side of the plate heat exchanger is varied in the range of 5-25 Hz. The operating pressure of R-l34a and mass flux of hot water are also varied 0.6-0.9 MPa and $45-105 kg/m^2s$, respectively. The experimental results indicate that evaporation heat transfer coefficient of pulsating flow is improved up to 6.3% compared with that of the steady flow at 10 Hz and $G_w=45 kg/m^2s$. It is also found that the evaporation heat transfer enhancement ratio is decreased with an increase in mass flux of hot water, and the evaporation heat transfer enhancement is little influenced by operating pressure of R-l34a.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

An Experimental Study of the Surface Treatment Effect on the Frosting/Defrosting Behavior of a Fin-Tube Heat Exchanger (휜-관 열교환기의 착.제상 거동에 대한 표면처리의 영향에 관한 실험적 연구)

  • Jhee, Sung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1062-1068
    • /
    • 2000
  • The effect of heat exchanger surface treatment on the frosting/defrosting behavior in a fin-tube heat exchanger is investigated experimentally. It is found that the hydrophilic surface mainly influences on the frosting behavior, however, the hydrophobic surface gives some influence on the defrosting behavior. In view of frosting performance, surface-treated heat exchanger with either hydrophilic or hydrophobic characteristic shows a little improvement in the thermal performance than the aluminium heat exchanger with no surface treatment. The result reveals that the heat exchanger with hydrophobic surface treatment is more effective in view of the defrosting efficiency and time. The amounts of residual water on the surface-treated heat exchangers are shown to be smaller than those of the bare heat exchanger, therefore further improvements on the performance of re-operations are expected.

Experimental study on the performance of a brazed plate heat exchanger (용접식 판형 열교환기의 성능에 관한 실험적 연구)

  • Kim, Jong-Ha;Yun, Jae-Ho;Kwon, Oh-Kyung;Kim, Jong-Hun;Ryu, Hae-Sung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.477-482
    • /
    • 2001
  • An experimental study on the performance evaluation of a brazed plate heat-exchanger with 10RT of normal cooling capacity has been carried out. In the present study, a brazed type plate heat exchanger was tested at a chevron angle $25^{\circ}$ with refrigerant R-22. Mass flux was ranged from $23\;to\;58kg/m^{2}s$ in condensation, and from $22\;to\;53kg/m^{2}s$ in evaporation. The heat transfer coefficient and pressure drop increased with the mass flux increases. The water side pressure drop increased with the cooling water flow rate and chilled water flow rate increases, while mass flux has little affect. It is also shown that the system performance can be improved by enlarging condensation heat transfer area.

  • PDF

An Experimental Study on the Performance of a Brazed Plate Heat Exchanger (용접식 판형 열교환기의 성능에 관한 실험적 연구)

  • 김종하;권오경;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study on the performance evaluation of a brazed plate heat exchanger with 10USRT of normal cooling capacity has been carried out. In the present study, a brazed plate heat exchanger was tested at a chevron angle $25^{\circ}$with refrigerant R-22. Refrigerant mass flux was ranged from 23 to 58 kg/$m^2$s in condensation, and from 22 to 53 kg/$m^2$s in evaporation. The heat transfer coefficients and pressure drops are increased as the mass flux increases. The water side pressure drop is increased as the cooling water flow rate and chilled water flow rate increase, while mass flux has little effect. It is also shown that the system performance can be improved by enlarging condensation heat transfer area.

Vessel Tank로 유입되는 폐열회수 처리에 관한 연구

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.66
    • /
    • pp.4-7
    • /
    • 2008
  • When a Combined cycle power plant was started, Steam turbine wasted pure water too much during prewarming of turbine. Wasted pure water gathered in vessel tank and evaporated immediately, then emitted atmosphere. We investigate method to recover the heat in vessel tank. We installed a heat exchanger in vessel tank. In this study, the designing and manufacturing procedures of the heat exchanger was presented. Also, the performance results was showed briefly.

  • PDF

A Study on Performance Analysis of the Bubble Pump in Solar Water Heater System (태양열 온수기 시스템에 적용된 기포펌프의 성능평가에 대한 연구)

  • Lee, Kwang-Sung;Li, Xuesong;Jin, Zhenhua;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2310-2315
    • /
    • 2008
  • In this paper, study on performance analysis of bubble pump on the domestic solar water heater system is presented. Device of this experiment is consisted of bubble pump, solar collector and heat exchanger. At the mean time, this system have attached temperature sensors and pressure sensors at bubble pump. In addition, the flow meter was installed at outlet of heat exchanger. And then result of experimental study, average value of the heat exchange amount in heat exchanger was about 7.9kcal/hr, the maximum value of the heat amount in water tank($0.4m^3$) was 489.7kcal/hr and the maximum value of the mass flow rate in bubble pump was about $0.5{\ell}/min$.

  • PDF

Cooling Performance Analysis of Ground-Source Heat Pump (GSHP) System with Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2018
  • This paper presents the cooling performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a vertical GHE and a surface water heat exchanger (SWHE). In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the hybrid GHE, Mode 1~Mode 4. The measurement results show that the system with HGHE mainly operates in Mode 1 and Mode 2 over the entire measurement period. The average cooling coefficient of performance (COP) for heat pump unit was 5.18, while the system was 2.79. In steady state, the heat pump COP was slightly decreased with an increase of entering source temperature. In addition, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further research are needed to optimize the design data for various load ratios of the HGHE.

A study of defrosting behavior according to surface characteristics in a fin-tube heat exchanger (표면 특성에 따른 휜-관 열교환기의 제상 거동에 관한 연구)

  • Lee, Kwan-Soo;Kim, Jun-Mo;Ji, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.921-927
    • /
    • 1999
  • In this study, the defrosting behaviors according to the surface characteristics in the fin-tube heat exchanger is experimentally examined. It is found that the draining rate of the hydrophilic and hydrophobic heat exchangers are evenly dispersed during defrosting, compared with that of the bare one. It is caused by the high density frost for the hydrophilic heat exchanger, and surface characteristic for the hydrophobic heat exchanger, respectively. The rest period of the hydrophilic and hydrophobic heat exchangers are shorter and their weight of residual water are smaller than those of the bare heat exchanger The hydrophilic and hydrophobic heat exchangers are more effective than the bare one in terms of defrosting efficiency, and the hydrophobic heat exchanger is better than the hydrophilic one.

  • PDF