• 제목/요약/키워드: Heat exchanger effectiveness

검색결과 115건 처리시간 0.024초

미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향 (Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin)

  • 성시경;송태호;최영철
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

톱니형휜이 부착된 2중 열교환관을 이용한 엔진 배열회수기에 관한 실험적 연구 (An Experimental Study on the Heat Exchanger for the Engine Waste Heat Recovery Using Serrated Fins and Bayonet Tube)

  • 양태진;김종수;임용빈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.685-691
    • /
    • 2005
  • In this study, high performance waste heat recovery heat exchanger was developed using the bayonet tube with spiral serrated fins. Especially, heat exchanger of the bayonet tube type was operated well because of double water passes mechanism and characteristics. A cooling water Passes down inner tubes to thimble-form tubes, then flows back up as it boils. The heat exchanger of bayonet tube type was composed of steel tube with 7channels$(I.D_1\;14mm.\;I.D_2\;31.6mm)$ and spiral serrated fins. The performance tests were conducted under the following conditions A cooling water flow rate was 273kg/h and engine l·pm was varied from 750rpm to 3500 rpm. From the experimental result. waste heat recovery was 9.21kW when engine rpm was 3500. and pressure drop was $15\~260mmHg/m^3$ The effectiveness of heat exchanger was about /$0.7\~0.9$. The performance of heat exchanger was evaluated by using the $\varepsilon-NTU$ method. In the study the NTU of the heat exchanger was $1.57\~2.33$.

열회수형 환기장치의 운전조건에 따른 경제성 평가에 관한 연구 (A Cost Analysis of the Heat Recovery Ventilator under Various Condition)

  • 강태욱;고재윤
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.21-28
    • /
    • 2006
  • Changes in building construction methods and repairing of older buildings have reduced infiltration rate. Synthetic materials, release airborne particles and uneven healthy odor are increased. For preventing pollutants introduce fresh outdoor air into the building, simply letting fresh outdoor air into building, however, Is not a cost-effective way to ventilation. When additional ventilation is added to an existing HVAC system, the heating and cooling equipment, often cannot handle the increased load. A HRV provides a way to minimize in energy costs while introducing fresh air to a building. In this study, the economical research of HRV, made of three types of materials, are conducted. Heat recovering characteristics are studied at seasonal outdoor air conditions based on the outdoor air property condition at, Seoul in 2002. As a results, the average sensible effectiveness is 0.75 in the sensible heat exchanger and average total effectiveness is 0.65 in the total heat exchanger. The pay back period of the sensible heat exchangers are $3.2{\sim}3.5$ year and it of total heat exchanger is 2.2 years.

저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구 (Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery)

  • 안영태;이욱현;김정훈;김종수
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

지하수를 이용한 양액냉각시스템 개발에 관한 기초연구 (A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water)

  • 남상운;손정익;김문기
    • 생물환경조절학회지
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

판형 열교환기 Full-scale 해석을 위한 1차원 유동 네트워크 모델 및 ε-NTU 모델의 수치적 연구 (NUMERICAL STUDY FOR THE FULL-SCALE ANALYSIS OF PLATE-TYPE HEAT EXCHANGER USING ONE-DIMENSIONAL FLOW NETWORK MODEL and ε-NTU METHOD)

  • 김민성;민준기;하만영
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.47-56
    • /
    • 2014
  • Since a typical plate heat exchanger is made up of a huge number of unitary cells, it may be impossible to predict the aero-thermal performance of the full scale heat exchanger through three-dimensional numerical simulation due to the enormous amount of computing resources and time required. In the present study, a simple flow-network model using the friction factor correlation and a thermal-network model based on the effectiveness-number of transfer units (${\varepsilon}$-NTU) method has been developed. The complicated flow pattern inside the cross-corrugated heat exchanger has been modeled into flow and thermal networks. Using this model, the heat transfer between neighboring streams can be considered, and the pressure drop and the heat transfer rate of full-scale heat exchanger matrix are calculated. In the calculation, the aero-thermal performance of each unitary cell of the heat exchanger matrix was evaluated using correlations of the Fanning friction factor f and the Nusselt number Nu, which were calculated by unitary-cell CFD model.

디젤 자동차용 딤플 사각 튜브형 EGR Cooler 의 열교환기 효율에 관한 연구 (Study on Heat Exchanger Efficiency of EGR Cooler with Dimpled Rectangular Tube Shape for Application of Diesel Vehicles)

  • 서영호;허성찬;구태완;송우진;김정;강범수
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.769-775
    • /
    • 2008
  • In this study, the investigations on the dimpled type Exhaust Gas Recirculation (EGR) cooler have been focused on the high heat exchanger efficiency. To overcome low heat exchanger efficiency of general EGR cooler, the dimpled type EGR cooler was developed. It was ensured the improvement of the performance of the dimpled type EGR cooler related to the heat exchange based on a series of the experiment. These results were caused by the increase of thermal surface area in accordance with the dimple's one. The estimation model of the heat exchanger efficiency using the Effectiveness-NTU method was also developed in order to verify the validity of experimental result. Also, the program for the estimation of the heat exchanger efficiency on the EGR cooler with regard to the dimpled tube shape was developed. Resultantly, it was confirmed that the dimpled type EGR cooler could be served better performance than the conventional one in view of the heat exchanger efficiency.

현장 적용 아이스슬러리 시스템의 열교환기 성능 실험 (The Heat Exchangers Performance Experiment for a Field Application Ice Slurry Cooling System)

  • 이상훈;유호선;이윤표
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1002-1007
    • /
    • 2009
  • The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the $1204\;m^2$ ($86\;m{\times}14\;m$). Three kinds of heat exchanger are selected, such as, plate, spiral and shell & tube type, to apply to the ice slurry systems. Experiment was done in the two cases. The first case, circulation water flow fixed at the design conditions for the state to change the flow of the supply of ice slurry. The second case, Ice slurry flow fixed at the design conditions for the state to change the flow of circulation water. Both side of Energy balance was calculated. The performance of plate heat exchanger is higher than others and it's enthalpy effectiveness is higher too.

  • PDF

흡입관 열교환기를 이용한 탄화수소계 냉매용 냉동사이클의 성능 분석 (Performance Analysis of Refrigeration Cycle of Hydrocarbon Refrigerant using Suction-Line Heat Exchanger)

  • 구학근
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2195-2201
    • /
    • 2009
  • 본 논문은 R290, R600a, R1270과 같은 탄화수소계 냉매를 사용하는 냉동사이클의 효율에 대한 흡입관 열교환기의 영향을 고려하였다. 이러한 흡입관 열교환기는 냉동시스템의 성능을 향상시킬 수도 있지만, 성능을 저하시킬 수도 있다. 본 논문에서는 흡입관 열교환기를 가진 냉동사이클의 성능 특성을 파악하기 위해서 정상상태의 수학적 모델을 사용하였다. 그리고 탄화수소계 냉매유량, 흡입관 열교환기의 내관 직경, 길이, 유용도 등과 같은 운전조건의 영향을 분석하였다. 연구결과는 흡입관 열교환기의 내관 직경, 길이, 유용도, 탄화수소계 냉매의 질량유량은 냉동사이클의 상대냉동능력지수, 냉동능력, 압축일량에 영향을 미치는 것을 알 수 있었다. 따라서 이러한 영향을 상세히 파악하여, 흡입관 열교환기를 설치한 탄화수소계 냉매용 증기압축식 냉동사이클을 설계할 필요가 있다.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.