• 제목/요약/키워드: Heat exchanger effectiveness

검색결과 115건 처리시간 0.025초

자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험 (Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe)

  • 이욱현;이종현;김종수
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

High-effectiveness miniature cryogenic recuperator

  • Hwang, Gyu-Wan;Jung, Je-Heon;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.74-79
    • /
    • 2009
  • The performance of cryogenic refrigerator greatly depends on the effectiveness of heat exchanger, which generates major entropy at low temperature. There are numerous types of heat exchanger available, but it is not easy to apply most of them to cryogenic application because the cryogenic heat exchanger must have high effectiveness value as well as small conduction loss in the environment of considerable temperature difference. In this paper, two kinds of heat exchanger are noticeably introduced for high-effectiveness miniature cryogenic recuperator(recuperative heat ex-changer). Also, the flow mal-distribution problem, which is a critical issue of performance deterioration in a high-effectiveness recuperator, is addressed with simplified model, and its alleviation method is discussed.

액-가스 열교환기를 이용한 R170(에탄)용 냉동시스템의 성능 특성 (Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger)

  • 구학근
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.78-85
    • /
    • 2016
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system using R170. These liquid-gas heat exchangers(internal or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. Exception for the effect of inner diameter, the RCI of R170 with respect to refrigerant mass flowrate, the length and effectiveness of internal heat exchanger is about 2.1~3.3% higher than that of R13 at the same experimental conditions. With a thorough grasp of these effect, it is necessary to design the R170 compression refrigeration cycle using internal heat exchanger.

판형열교환기의 열에너지 성능평가 (Evaluation on Thermal Energy Performance of a Plate Heat Exchanger)

  • 강병하;김도규
    • 한국수소및신에너지학회논문집
    • /
    • 제14권1호
    • /
    • pp.53-60
    • /
    • 2003
  • Performance evaluation on thermal transport of a plate heat exchanger has been carried out. The $\varepsilon$-Ntu method is employed to evaluate the performance of a brazed type of plate heat exchanger. This problem is of particular interest in the design of a plate heat exchanger. The characteristics of heat transfer as well as pressure drop are studied in the wide range of Reynolds numbers in the cold side while that of hot side is fixed at 620. f-factor correlation in a plate heat exchanger is obtained from the pressure drop data. It is also found that the effectiveness of the plate heat exchanger is increased as the Ntu is increased.

배기열 회수용 종이 열교환기의 성능에 영향을 미치는 인자에 관한 연구 (A Study on the Factors Affecting the Performance of Paper Heat Exchanger for Exhaust Heat Recovery)

  • 정민호;유성연
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.956-964
    • /
    • 2005
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery The purpose of this research is to find the factors affecting the performance of paper heat exchanger for exhaust heat recovery, which can be applied directly to the conventional ventilation unit, air-purifier, and air-conditioning system. In this study, thermal performance and pressure loss of the paper heat exchanger are measured and compared at various operating conditions. The effectiveness of sensible, latent and total heat at the face velocity of 0.75 m/s are $77\%,\;47\%\;and\;57\%$ in the cooling condition and $77\%,\;59\%,\;and\;\%$ in the heating condition, respectively. The effectiveness for sensible heat is only affected by velocity. On the other hand, the effectiveness for latent heat is affected. by temperature and relative humidity.

상변화물질을 적용한 핀-관 열교환기의 열전달 성능 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Characteristics of a Finned-Tube Heat Exchanger in a PCM Thermal Energy Storage System)

  • 정동일;장민;김용찬
    • 설비공학논문집
    • /
    • 제28권1호
    • /
    • pp.15-20
    • /
    • 2016
  • Phase change materials (PCM) are able to store a large amount of latent heat, and can be applied to thermal energy storage systems. In a PCM, it takes a long time to store heat in the storage system because of the low thermal conductivity. In this study, a finned-tube-in-tank heat exchanger was applied to a PCM thermal energy storage system to increase heat transfer efficiency. The effects of geometric and operating parameters were investigated, and the results were compared with those of the tube-in-tank heat exchanger. The finned-tube-in-tank heat exchanger showed higher heat transfer effectiveness than the tube-in-tank heat exchanger. The heat exchange effectiveness of the storage tank was determined as a function of the average NTU.

열교환기 형식에 따른 열교환기의 에너지 및 엔트랜시 성능 특성 해석 (Energy and Entransy Characteristic Analysis of Heat Exchangers Depending on Heat Exchanger Type)

  • 김경훈;정영관;한철호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.112-121
    • /
    • 2020
  • In this work energy and entransy characteristics of heat exchangers are analyzed for 12 different flow arrangements of heat exchangers. The dimensionless parameters are number of entransy dissipation (Ng), number of entransy dissipation-based thermal resistance (Nr), and entransy dissipation-based effectiveness of heat-exchanger (εg). The dimensionless parameters are expressed analytically in terms of the effectiveness of heat exchanger (ε), heat capacity ratio (c), and number of transfer unit (N) for optimal performance of heat exchangers. Results showed that the dimensionless parameters based on the entransy dissipation can be useful concepts for optimal design of heat exchangers.

수소액화 시스템용 이중관 열교환기의 유용도 측정 (Effectiveness Measurement of a Double-Tube Heat Exchanger for a Hydrogen Liquefaction System)

  • 최항집;백종훈;강병하;최영돈
    • 한국수소및신에너지학회논문집
    • /
    • 제10권1호
    • /
    • pp.19-26
    • /
    • 1999
  • 수소 액화시스템의 중요한 구성요소인 열교환기를 이중관 형태로 설계 제작하여 극저온 영역에서의 유용도를 실험적으로 측정하였다. 이중관 열교환기의 내관과 내 외관 사이의 환상 공간으로 수소를 공급하고, 온도와 압력, 유량을 측정하였다. 측정된 온도와 유량으로부터 유용도를 환산한 결과, 열교환면적이 증가함에 따라 열교환기의 유용도는 증가하였다. 또한 저온 수소와 고온 수소의 열용량비가 감소함에 따라 열교환기의 유용도는 증가하나 유용도의 증가폭은 감소하였다. 따라서 본 연구에서는 수소 액화시스템에 필요한 유용도를 얻기 위한 열교환기의 길이 및 열용량비의 선정 기준을 제시하였다.

  • PDF

다공질 폴리우레탄 폼 매트릭스 축류 회전형 열교환기의 성능특성에 관한 실험적 연구 (Experimental Study on the Performance of Axial Flow Rotary Heat Exchanger with the Porous Polyurethane Foam Matrix)

  • 태춘섭;박상동;조성환;최영돈
    • 설비공학논문집
    • /
    • 제5권1호
    • /
    • pp.44-54
    • /
    • 1993
  • This is an experimental study to identify the performance of air-to-air rotary heat exchanger with polyurethane foam matrix. The experimental apparatus including heating AHU(Air Handling Unit), cooling AHU, sensor chamber, and heat exchanger testing unit was designed and manufactured in this study. The performance of heat exchanger with porous polyurethane foam matrix was tested with variations of the density and the thickness of matrix, regulating the wind velocity and the rotational speed of matrix. The actual heat recovery effectiveness, air leakage rate, and pressure drop of heat exchanger were measured and analyzed.

  • PDF

Numerical Modeling of Regenerative Rotary Heat Exchanger: A Review

  • Baruah, Netramoni;Prasanna, Kumar G.V.
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.44-55
    • /
    • 2017
  • Background: Heat recovery is one of the prominent ways to save a considerable amount of conventional fossil fuel and minimize its adverse effects on the environment. The rotary heat exchanger is one of the most effective and efficient devices for heat recovery or heat exchanging purposes. It is a regenerative type of heat exchanger, which has been studied and used for many heat recovery purposes. However, regenerative thermal wheels have been mostly used as heat recovery systems in buildings. For modeling a rotary regenerator, it is very important to numerically consider all the factors involved, such as effectiveness, rotational speed, geometrical size and shape, and pressure drop (${\Delta}p$). In recent times, several researchers have actively studied the rotary heat exchangers, both theoretically and experimentally. Reviews: In this paper different advances in the numerical modeling of regenerative rotary heat exchangers in relation to fluid flow and heat transfer have been discussed. Researchers have indicated that the effectiveness of the regenerative rotary heat exchanger depends on various factors including, among many others, rotational speed, rotational period and combustion power. It is reported that with the increase of periodic rotation the deviation of theoretical results from the experimental result increases. The available literature indicates that regenerative heat exchangers are having relatively more effectiveness (60-80%), compared to other heat exchangers. It is also observed that the finite difference method and finite volume methods are mostly used for discretizing the heat transfer governing equations, under some assumptions. Research also indicates that for the effectiveness calculation the ${\varepsilon}-NTU$ method is the most popular and convenient.