Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.112

Energy and Entransy Characteristic Analysis of Heat Exchangers Depending on Heat Exchanger Type  

KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology)
JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology)
HAN, CHUL HO (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 112-121 More about this Journal
Abstract
In this work energy and entransy characteristics of heat exchangers are analyzed for 12 different flow arrangements of heat exchangers. The dimensionless parameters are number of entransy dissipation (Ng), number of entransy dissipation-based thermal resistance (Nr), and entransy dissipation-based effectiveness of heat-exchanger (εg). The dimensionless parameters are expressed analytically in terms of the effectiveness of heat exchanger (ε), heat capacity ratio (c), and number of transfer unit (N) for optimal performance of heat exchangers. Results showed that the dimensionless parameters based on the entransy dissipation can be useful concepts for optimal design of heat exchangers.
Keywords
Heat exchanger; Energy; Entransy; Effectiveness; Number of transfer unit, NTU; Entransy dissipation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Wen, X. Gu, M. Wang, Y. Liu, and S. Wang, "Multi-parameter optimization of shell-and-tube heat exchanger with helical baffles based on entransy theory", Applied Thermal Engineering, Vol. 130, 2018, pp. 804-813, doi: https://doi.org/10.1016/j.applthermaleng.2017.10.164.   DOI
2 A. Bejan and A. D. Kraus, "Heat transfer handbook", John Wiley & Sons, USA, 2003.
3 Z. Y. Guo, H. Y. Zhu, and X. G. Liang, "Entransy - a physical quantity describing heat transfer ability", Int. J. Heat Mass Transfer, Vol. 50, No. 13-14, 2007, pp. 2545-2556, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.034.   DOI
4 X. T. Cheng, X. G. Liang, and Z. Y. Guo, "Entransy decrease principle of heat transfer in an isolated system", Chin. Sci. Bull., Vol. 56, 2011, pp. 847-854, doi: https://doi.org/10.1007/s11434-010-4328-4.   DOI
5 X. T. Cheng and X. G. Liang, "From thermomass to entransy", Int. J. Heat Mass Transfer, Vol. 62, 2013, pp. 174-177, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.063.   DOI
6 C. H. Han and K. H. Kim, "Entransy and exergy analyses for optimizations of heat-work conversion with carnot cycle", J. Ther. Sci., Vol. 25, 2016, pp. 242-249, doi: https://doi.org/10.1007/s11630-016-0856-9.   DOI
7 Z. Q. Yu, P. Wang, W. J. Zhou, Z. Y. Li, and W. Q. Tao, "Study on the consistency between field synergy principle and entransy dissipation extremum principle", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 621-634, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.044.   DOI
8 L. Zhang, H. Y. Wei, and X. S. Zhang, "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory", Energy, Vol. 141, 2017, pp. 661-672, doi: https://doi.org/10.1016/j.energy.2017.09.118.   DOI
9 K. H. Kim and K. Kim, "Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems", Int. J. Heat Mass Transfer, Vol. 84, 2015, pp. 80‒90, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.002.
10 X. Qian and Z. Li, "Analysis of entransy dissipation in heat exchangers", Int. J. Thermal Sci., Vol. 50, No. 4, 2011, pp. 608-614, doi: https://doi.org/10.1016/j.ijthermalsci.2010.11.004.   DOI
11 S. Wang, G. Jian, J. Wang, L. Sun, and J. Wen, "Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 743-750, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.061.   DOI
12 X. Cheng, Q. Zhang, and X. Liang, "Analyses of entransy dissipation, entropy generation and entransy-dissipationbased thermal resistance on heat exchanger optimization", App. Therm. Eng., Vol. 38 , 2012, pp. 31-39, doi: https://doi.org/10.1016/j.applthermaleng.2012.01.017.   DOI
13 J. Wu and X. Cheng, "Generalized thermal resistance and its application to thermal radiation based on entransy theory", Int. J. Heat Mass Transfer, Vol. 58, No. 1-2, 2013, pp. 374-381, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.046.   DOI
14 Q. Chen, "Entransy dissipation-based thermal resistance performance design and optimization", Int. J. Heat Mass Transfer, Vol. 60, 2013, pp. 156-162, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.062.   DOI
15 Y. C. Hua, T. Zhao, and Z. Y. Guo, "Optimization of the one -dimensional transient heat conduction problems using ex tended entransy analyses", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 166-172, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.101.   DOI
16 Y. C. Xu, Q. Chen, and Z. Y. Guo, "Optimization of heat exchanger networks based on Lagrange multiplier method with the entransy balance equation as constraint", Int. J. Heat Mass Transfer, Vol. 95, 2016, pp. 109-115, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.092.   DOI
17 L. Xia, Y. Feng, X. Sun, and S. Xiang, "A novel method based on entransy theory for setting energy targets of heat exchanger network", Chinese Journal of Chemical Engineering, Vol. 25, No. 8, 2017, pp. 1037-1042, doi: https://doi.org/10.1016/j.cjche.2017.03.015.   DOI