• Title/Summary/Keyword: Heat exchanger design

Search Result 684, Processing Time 0.023 seconds

Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine (가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화)

  • Lee, Seok-Hwan;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.

Optimum Design of a Cooling Air Cooler Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 Cooling Air Cooler 열교환기의 최적 설계)

  • Kim, Seong-Soo;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.85-92
    • /
    • 2017
  • Global air traffic is forecast to grow at an average annual rate of around 5% in the next 20 years. The continuous growth of air traffic and raised environmental awareness put increasing pressure on aero engine manufacturers to reduce fuel burn and emissions. NEWAC are a new integrated program of the European Union with focus on innovative core engine concepts to achieve this problem. In this paper, Within NEWAC, active core engine configurations will be investigated. the investigation is focused on the optimal design of the CAC heat exchanger for active core. For optimal design of he CAC heat exchanger, the HTFS of basic design of heat exchanger are analyzed so as to proceed an optimization routines based on Response Surface Method(RSM) and Design of Experiment(DOE). As a result, CAC heat exchanger optimized by 1.0314 lb/s mass flow rate and 3.9058 mm TP of tube layout and 206.8181 mm height of heat exchanger and 918 tube number for heat transfer and pressure drop. We confirm the design optimization using RSM and DOE is useful on complex structure of heat exchanger.

Design of a Micro-Channel Heat Exchanger for Heat Pump Using Approximate Optimization Method (근사최적화 기법을 이용한 히트펌프용 마이크로 채널 응축기 설계)

  • Seo, Seok-Won;Ye, Huee-Youl;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.256-264
    • /
    • 2012
  • A general procedure for the optimal design of a micro-channel heat exchanger for heat pump systems is presented. For this design, a performance analysis program that can reflect the various geometric variables of the micro-channel heat exchanger was developed. The deviation between simulated and experiment results of previous research was within 4% for the heat transfer rate. To prove the feasibility of the optimal design process, the performance of the reference heat exchanger was compared to that of the optimized heat exchanger. The $JF_{air}$ and PECv of the optimized heat exchanger were enhanced by 14% and 26%, respectively.

NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD (3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구)

  • Kang, S.H.;Kim, H.J.;Chung, D.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

Development of Design-Program of Fixed Type Tube-Sheet for Heat Exchanger (열교환기용 고정형 튜브시트의 설계프로그램 개발)

  • Kong J.S.;Lee K.J.;Han J.Y.;Cho J.R.;Bae W.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.206-212
    • /
    • 2006
  • Design programs of tube-sheet for heat exchanger based on the related engineering society codes have been widely used. But it is not easy fer beginners to use the design programs. So we need to develop an easy program for design of tube-sheet for heat exchanger. This paper describes a developed design-program of tube-sheet fur heat exchanger. The developed program was coded on boiler theory and pressure vessel codes, provided by TEMA(Tubular Exchanger Manufactures Association) and ASME(American Society of Mechanical Engineers). Visual Basic, which is convenient for beginners to deal with, was used in the programming. Also a finite element analysis of tube-sheet for heat exchanger was carried to verify this developed program by using a commercial software, ANSYS. In the finite element analysis, tube and tube-sheet of heat exchanger were substituted by solid plate having equivalent properties for convenience of calculation. The thickness of tube-sheet obtained by the developed design-program was in good agreement with that of tube-sheet by FEA.

An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing (배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구)

  • Lee, Yuk-Hyeong;Kim, Sun-Yeong;Park, Myeong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.

An Experimental Study on the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 관한 실험적 연구)

  • Yoo Seong Yeon;Chung Min Ho;Kim Ki Hyung;Lee Je Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.

A Study on the Optimum Design of Plate-Fin Compact Sensible Heat Exchanger for the Heat Recovery of Exhaust Gas (배기열(排氣熱) 회수용(回收用) 평판(平板) - 휜형(形) 밀집형(密集形) 현열(顯熱) 열교환기(熱交換器)의 최적설계(最適設計)에 관한 연구(硏究))

  • Choi, Y.D.;Park, S.D.;Woo, J.S.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.85-98
    • /
    • 1990
  • Method of optimum design of a compact sensible plate-fin heat exchanger for the heat recovery of exhaust gas from the air conditioning space was developed in consideration of the econamics of investment cost and profit according to the installation of heat exchanges. In the counterflow heat exchanger, the frontal area was fixed and the length of heat exchanger was optimized in order to maximize the net gain according to the setting of the heat exchanger. In the cross flow heat exchanger, the size of the exchanger was also optimized to maximize the net gain.

  • PDF

Optimal Design of Compact Heat Exchanger (Louver Fin-tube Heat Exchanger for High Heat Transfer and Low Pressure Drop)

  • Kang, Hie-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.891-898
    • /
    • 2011
  • The present work was conducted to get the best geometric information for the optimum design of the complex heat exchanger. The objective function for optimal design was expressed as a combination of pressure drop and heat transfer rate. The geometric parameters for the variables of louver pitch and height, tube width, etc., were limited to ranges set by manufacturing conditions. The optimum geometric parameters were calculated by using empirical correlations and theory. The sensitivity of the parameters and optimum values are shown and discussed. The weighting factor in the objective function is important in the selection of the louver fin-tube heat exchanger.