• Title/Summary/Keyword: Heat exchanger

Search Result 2,439, Processing Time 0.036 seconds

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

An analysis on the characteristics of regasification system for gas fuelled ship depending on the mixing ratio of eglycol and water (Gas Fuelled Ship용 재기화 시스템의 Eglycol Water 혼합비율에 따른 시스템 특성분석)

  • Lee, Yoon-Ho;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.799-805
    • /
    • 2014
  • Recently, the regulations of the Local and Global for a variety of air pollution prevention has been enhanced by the steep rise in fuel oil prices. So, the appearance of Gas Fuelled Ships became necessary. In this study, we configured a regasification system which uses Eglycol water as a heating medium to evaporate before being supply fuel to the DF engine, then we analysed the system properties according to the Eglycol water mixing ratio. The results were as follows. When pressure, temperature, and flux of natural gas(NG) which are supplied to DF engines are uniformly kept, the higher mixing ratio of Eglycol is, the lower mixing specific heat of Eglycol water. And the cycle flux and electric power were 1.65 and 1.54 times more required. respectively, than water was used as the heating medium. Basic variables including mass flux according to the mixing ratio of Eglycol water, required electric power of operating fluid pumps, the temperature of natural gas which is supplied to the engine, and the heat exchanger's capacity were drawn from the gotten results.

A Study on the Improvement for Cycle Efficiency of Closed-type OTEC (폐쇄형 해양온도차발전 사이클 효율 향상 방안)

  • Lee, Ho-Saeng;Kim, Hyeon-Ju;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A study on the improvement for cycle efficiency of closed-type ocean thermal energy conversion (OTEC) was studied to obtain the basic data for the optimal design of cycle. For that, OTEC cycle with a generator, a reheater and a multi-turbine was simulated and analyzed. The basic thermodynamic model for OTEC is Rankine cycle and the surface seawater of $26^{\circ}C$ and deep seawater of $5^{\circ}C$ were used for the heat source of evaporator and condenser, respectively. Ammonia is used as the working fluid. The cycle efficiency increased when generator is added with 0.9 generator effectiveness. When the reheater and multi-turbine are applied in the basic cycle, the cycle efficiency showed 3.14% and the capacity of heat exchanger decreased for same total cycle power. For the OTEC cycle with the generator, the reheater and the multi-turbine showed the highest cycle efficiency and increased the efficiency by more than 6.5% comparing with the basic OTEC cycle.

Flow Analysis and an Experimental Study on Formation of Slurry Ice in the Reversing Flow Layer (역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.421-428
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relieve a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This experimental study was carried out to observe flow pattern and formation of slurry ice in reversing flow layer to improve efficiency of heat transfer between fluid and freezing tube and to disturb ice adhesion on tube surface. The reversing flow layer was made by using reversing materials in heat exchanger section(test section) to disturb ice adhesion. At this experiment, styrofoam balls and poly propylene balls were used as reversing materials, and a 20wt% solution of ethylene glycol was used as reversing flow layer. The experimental apparatus was constructed of the test section for making/storing slurry ice, the brine tank, pumps for circulating of a 20wt% solution of ethylene glycol and brine, a flow-meter, a data logger for measuring the temperature. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.

Nondestructive Examination of Ferromagnetic Tube Using Magnetic Saturation Eddy Current Technique (자기포화 와전류기법에 의한 자성 튜브 비파괴검사)

  • Lee, Hee-Jong;Cho, Chan-Hee;Song, Seok-Yoon;Jee, Dong-Hyun;Jung, Jee-Hong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.407-415
    • /
    • 2008
  • The tubes in heat exchanger are typically made from copper alloy, stainless steel, carbon steel, titanium alloy material. type-439 ferritic stainless steel is ferromagnetic material, and furnish higher heat transfer rates than austenitic stainless steels and higher resistance to corrosion-induced flaws. Ferritic stainless steel can typically be found in low-pressure(LP) feedwater heaters and moisture separator reheaters(MSRs). LP feedwater heaters generally utilize thin wall type-439 stainless steel tubing, whereas MSRs typically employ a heavier wall tubing with integral fins. Service-induced damage can occur on the OD(outside diameter) surface of type-439 ferritic stainless steel tubing which is employed for MSRs tubing, and the most typical damage mechanism is vibration-induced tube-to-TSP(tube support plate) wear and fatigue cracking. The wear has been reported that occurs mainly on the OD surface. Accordingly, in this study, we have evaluated the flaw sizing capability of magnetic saturation eddy current technique using magnetic saturation probe and flawed specimen.

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (II) : Based on Piping System Stress Analysis (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (II) : 배관 시스템 응력 해석을 이용한 위험도 평가)

  • Yu, Jong Min;Song, Jung Soo;Jeong, Tae Min;Lok, Vanno;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.14-25
    • /
    • 2018
  • The combined cycle power plant has a cycle of operating the gas turbine with fuel, such as natural gas, and then producing steam using residual heat. The fuel gas is supplied to the gas turbine at a level of 4 to 5 MPa, $200^{\circ}C$ through a compressor and a heat exchanger. In this study, the risk assessment method considering the piping system stress was carried out for safe operation and soundness of the gas fuel supply piping system. The API 580/581 RBI code, which is well known for its risk assessment techniques, is limited to reflect the effect of piping stress on risk. Therefore, the systematic stress of the pipeline is analyzed by using the piping analysis. For the study, the piping system stress analysis was performed using design data of a gas fuel supply piping of a combined cycle power plant. The result of probability of failure evaluated by the API code is compared to the result of stress ratio by piping analysis.

Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery (바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정)

  • Kim, Jong Hwan;Lee, Doug Hyung;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.348-355
    • /
    • 2008
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer (스팀 유동층 건조기를 이용한 고수분 저등급 석탄의 건조 특성)

  • Kim, Gi Yeong;Rhee, Young-Woo;Park, Jae Hyeok;Shun, Dowon;Bae, Dal-Hee;Shin, Jong-Seon;Ryu, Ho-Jung;Park, Jaehyeon
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.321-329
    • /
    • 2014
  • In this study, Indonesia low rank coal, which has moisture content of around 26%, is dried less than 5% by using a laboratory-scale (batch type) steam fluidized-bed dryer in order to produce the low-moisture, high rank coal. Normally, CCS (carbon capture and storage) process discharges $CO_2$ and steam mixture gas around $100-150^{\circ}C$ of temperature after regeneration reactor. The final purpose of this research is to dry low rank coal by using the outlet gas of CCS process. At this stage, steam is used as heat source for drying through the heat exchanger and $CO_2$ is used as fluidizing gas to the dryer. The experimental variables were the steam flow rate ranging from 0.3 to 1.1 kg/hr, steam temperature ranging from 100 to $130^{\circ}C$, and bed height ranging from 9 to 25 cm. The characteristics of the coal, before and after drying, were analyzed by a proximate analysis, the heating value analysis and particle size analysis. In summary, the drying rate of low rank coal was increased as steam flow rate and steam temperature increased and increased as bed height decreased.

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.