• Title/Summary/Keyword: Heat element

Search Result 1,768, Processing Time 0.038 seconds

Analysis on Quench Propagation Charactreristics of HTS Tape (고온초전도 테이프 선재의 \ulcorner치 전파 특성 해석)

  • 이지광;김지훈;류경우;차귀수;한송엽
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2000
  • The main issues for the power application of high Tc superconducting tape are lower AC loss and higher stability conditions. HTS tape has large stability margin by high heat capacity of superconductor itself and high temperature margin. But, it can be damaged by continuous heat generation at quench point, because normal zone propagation velocity by generating heat is very low. Here, we analyze the quench propagation characteristics using finite element method for BSCCO-2223 HTS tape.

  • PDF

A study on the heat flow in laser welding of steel sheet of the different thickness (두께가 다른강판의 레이저 용접시 열유동에 관한 연구)

  • 양영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 1994
  • Laser welded blanks are finding increased usage in many industrial applications, which are made of different sheet thickness or different material strengths joined together. In this study the heat flow problem in laser welding of the different steel sheet thickness was solved by using a finite element method, and a series of experiments wers carried out to confirm the validity of the numerical method.

  • PDF

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

An Experimental Study on the Pressure Drop and Heat Transfer Performance in Tubes with Three Dimensional Roughness (삼차원 조도관의 압력손실 및 열전달 성능에 대한 실험적 연구)

  • Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.276-286
    • /
    • 1995
  • In this study, pressure drop and heat transfer coefficients were measured in tubes with three dimensional roughness. Dimples were made by rotating the saw-tooth shaped finning disc on the outer tube surface. Resultant dimple shape was oval. Friction and heat transfer tests were performed with a range of roughness variables-roughness height 'e', axial roughness pitch 'p', circumferential roughness pitch 'z'. Within the test range, tube with e=0.5mm, z=5mm, p=3mm performed best. The efficiency ratio(rati of the heat transfer improvement and the pressure drop increase) of the tube approached 1.0 at low Reynolds number, and it was higher than that of the two-dimensional roughess tube of the same roughness height. Test data were predicted by 'discrete element method'. Results show that discrete element method underpredicts the friction data by 2% to 32%, and overpredicts the heat transfer data by-12% to 113%.

  • PDF

Finite Element Analysis of Nd:YAG Pulse Laser Welding for AISI 304 Stainless Steel Plate (AISI 304 스테인리스 강판의 Nd:YAG 펄스 레이저 용접에 관한 유한요소해석)

  • Nam Gi-Jeong;Kim Kwan-Woo;Hong Jin-Uk;Lee Jae-Hoon;Suh Jeong;Cho Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.428-434
    • /
    • 2006
  • Pulse laser welding of AISI 304 stainless steel plate was simulated to find optimal welding conditions by using commercial finite element code MARC. Due to geometric symmetry, a half model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. A moving heat source was designed on the basis of experimental data. As a result, Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

Analysis of Temprature and Thermal Stress Distribution of a DI Diesel Engine Cylinder Head(PART I) (직접분사식 디젤엔진 실린더헤드의 온도 및 열응력 분포해석(PART I))

  • 이진호;이교승;장경준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.187-196
    • /
    • 1996
  • In this study, 3-dimensional finite element model of a diesel engine cylinder head was made to accomplish heat transfer analysis and also thermal stress and deformation analysis. Heat release analysis and Nusselt-Reynolds correlations were applied to determine the convective boundary conditions which are required for heat transfer analysis to calculate temperature distribution. Thermal stress distribution was also investigated from heat transfer analysis results. Steady state temperature and heat flux were measured by using K-type thermocouples and then compared with numerical results to give a guarantee for the propriety of numerical analyses.

  • PDF

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

Research on the Inverse Heat Conduction Problem for Thermal Analysis of a Large LPG Engine Piston (대형 LPG 엔진 피스톤의 온도 분포 해석을 위한 열전도 역문제에 관한 연구)

  • 이부윤;박철우;최경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.146-159
    • /
    • 2002
  • An efficient method to predict the convection heat transfer coefficients on the top surface of the engine piston is proposed. The method is based on the inverse method of the thermal conduction problem and uses a numerical optimization technique. In the method, the heat transfer coefficients are numerically obtained so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. The method can be effectively used to analyze the temperature distribution of engine pistons in case when application of prescribed-temperature boundary condition is not reasonable because of insufficient number of measured temperatures. A hollow sphere problem with an analytic solution is taken as a simple example and accuracy and efficiency is demonstrated. The method is applied to a practical large liquid petroleum gas(LPG) engine piston and the heat transfer coefficients on the top surface of the piston is successfully calculated. Resulting analyzed temperature favorably coincides with measured temperature.

A Study on the Thermal deformation during Heat-Treatment (열처리시의 열변형에 관한 연구)

  • Jang J. W.;Kim D. J.;Kang J. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.161-166
    • /
    • 2001
  • The distortion and fracture of heat treated components is a major industrial problem, which may considerably increase the costs of operations that involve high cooling rates. And also, thermal deformation would be generated during Heat Treatment. In this paper, the purpose is to check out the thermally deformed components during heat treatment and to analyze thermal deformation and thermal stress by two dimensional Finite Element Method. And two dimensional FEM program is evaluated for heat transfer and thermal deformation.

  • PDF

Theoretical Temperature Analysis for 88316 Piping Weld (SS316강 배관 용접부에 대한 이론적 온도해석)

  • Kim, Jong-Sung;Lee, Seung-Gun;Jin, Tae-Eun;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1623-1629
    • /
    • 2003
  • In this paper, the arc beam is considered as a moving disc heat source with a pseudo-Gaussian distribution of heat intensity. The solution for temperature distribution on welds is derived by using the image heat source method and the superposition method. It is general solution in that it can determine the temperature-rise distribution in and around the arc beam heat source, as well as the width and depth of the melt pool (MP) and the heat-affected zone (HAZ) in welding short lengths, where quasi-stationary conditions may not have been established. As a comparative study, the results of this analytical approach has been compared with that of the finite-element modeling. As a result, The theoretical analysis presented here has shown good consistency and is more time/cost-effective method compared with FEM.