• Title/Summary/Keyword: Heat distribution

Search Result 2,939, Processing Time 0.032 seconds

Measurement of Welding Residual Stress in a 25-mm Thick Butt Joint using Inherent Strain Method (고유변형도법에 의한 두께 25mm 맞대기용접부의 두께방향의 잔류응력측정)

  • Park, Jeong-Ung;An, Gyu-Baek;Woo, Wanchuck;Heo, Seung-Min
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.67-72
    • /
    • 2013
  • Overlay welding is carried out to improve the corrosion resistance, wear resistance and heat resistance on the surface of the chemical plant and steelmaking plant structures. In overlay welding, control of the bead size and the temperature distribution of weldment are particularly important because that is directly connected to the improvement of quality and productivity. The aim of this study is to model the welding heat source that is very useful to analyze the bead size and temperature distribution of weldment. To find the welding heat source model, numerical analyses are performed by using FE software MSC-marc.

A Study on Numerical Analysis for Heat Transfer and Flow Characteristics in a Ribbed Tube (열교환기 내 리브드 튜브의 열전달 및 유체유동에 관한 수치 해석적 연구)

  • Jeon, Jeong-Do;Jeon, Eon-Chan;Jeung, Hui-Gyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.134-139
    • /
    • 2011
  • This study was conducted on the characteristics of fluid flow and heat transfer in the ribbed tube used for a steam power plant. It was assumed that the air is incompressible and therefore, its density is not variable according to temperature. In addition, the gravity was ignored. A commercial code of computational fluid dynamics was used and standard k-$\epsilon$ model was used together with the energy equation included to calculate heat transfer. As Reynolds No. was low at the velocity distribution in the axial direction, the air reached hydro-dynamically fully developed region shortly but high Reynolds No. yielded late full hydro-dynamic development. The velocity distribution and non-dimensional temperature distribution were all physically reasonable and thus had a good agreement with the experimental result.

A Study on the Temperature Distribution of Disc Brake System Considering the Material Property of the Disc Brake Piston (디스크 브레이크 피스톤 재질을 고려한 브레이크 시스템 온도 분포에 관한 연구)

  • Kim, Soo-Tae;Kim, Jin-Han;Kim, Joo-Shin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.45-51
    • /
    • 2005
  • Braking performance of a vehicle can be significantly affected by the temperature increment in the brake system. Therefore, the important problem in brake system is to reduce the thermal effect by friction heat. Recently, many studies have been performed and good results have been reported on the prediction of the brake disk temperature. However, the study on the pad, piston and brake fluid temperature is rarely found despite of its importance. In this study, the temperature distribution of the disc brake system is studied according to the material properties of brake piston. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady state temperature distributions are analyzed by using the finite element method and the numerical results are compared with the experimental data.

Thermoelastic Contact Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열탄성 접촉해석)

  • 구병춘;서정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.173-180
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In the first part, the influence of the s-cam load angles and elastic modulus of the pad on the contact pressure distribution between pad and drum was checked by a three dimensional model. In the second part heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on the thermal distribution is checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

The temperature distributions of the curing space according to blocking the opening of gang-form at the apartment in the cold weather (동절기 공동주택 갱폼 개구부 천막보양에 따른 보양 온도 분포 분석)

  • Cho, Hong-Bum;Song, Jin-Hee;Kim, Young-Sun;Choi, Ji-Su;Lee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.140-141
    • /
    • 2022
  • CFD analysis was performed to analyze the temperature distribution of the inner space of the curing house according to blocking the opening of the gang-form with a tent in case of concrete pouring and heat curing of the apartment house during the winter season. If the gang-form opening is closed with a tent during internal heating using a hot air blower in the winter, the internal temperature rises compared to the non-reserved due to air-tightness of the curing spaces, and uniform temperature distribution can be ensured. In addition, it is possible to increase curing efficiency by reducing the amount of heat supplied and shortening the heating time.

  • PDF

Study on the Characteristics of Spatial Relationship between Heat Concentration and Heat-deepening Factors Using MODIS Based Heat Distribution Map (MODIS 기반의 열 분포도를 활용한 열 집중지역과 폭염 심화요인 간의 공간관계 특성 연구)

  • Kim, Boeun;Lee, Mihee;Lee, Dalgeun;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1153-1166
    • /
    • 2020
  • The purpose of this study was to analyze the spatial correlation between the heat distribution map of the satellite imaging base and the factors that deepen the heat wave, and to explore the heat concentration area and the space where the risk of future heat wave may increase. The global Moran's I of population, land use, and buildings, which are the causes of heat concentration and heat wave deepening, is found to be high and concentrated in specific spaces. According to the analysis results of local Moran's I, heat concentration areas appeared mainly in large cities such as metropolitan and metropolitan areas, and forests were dominant in areas with relatively low temperatures. Areas with high population growth rates were distributed in the surrounding areas of Gyeonggi-do, Daejeon, and Busan, and the use of land and buildings were concentrated in the metropolitan area and large cities. Analysis by Bivarate Local Moran's I has shown that population growth is high in heat-intensive areas, and that artificial and urban building environments and land use take place. The results of this research can lead to the ranking of heat concentration areas and explore areas with environments where heat concentration is concentrated nationwide and deepens it, so ultimately it is considered to contribute to the establishment of preemptive measures to deal with extreme heat.

New algorithm for simulating heat transfer in a complex CPFS (Cable Penetration Fire Stop)

  • Yun, Jong-Pil;Kwon, Seong-Pil;Cho, Jae-Kyu;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1798-1803
    • /
    • 2003
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. The dynamic heat transfer can be described by a partial differential equation (PDE) and its initial and boundary conditions. For the shake of simplicity PDE is divided into two parts; one corresponding to the heat transfer in the axial direction and the other corresponding to the heat transfer on the vertical layers. Two numerical methods, SOR (Sequential Over-Relaxation) and FEM (Finite Element Method), are implemented to solve these equations respectively. The axial line is discretized, and SOR is applied. Similarly, all the layers are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The heat fluxes on the layers are calculated by FEM. It is shown that the penetration cable influences the temperature distribution of the fire stop system very significantly. The simulation results are shown in the three-dimensional graphics for the understanding of the transient temperature distribution in the fire stop system.

  • PDF

Local Heat Transfer Characteristics on Fin Surface of Plate Fin-Oval Tube with Delta Wing Vortex Generators (Plate Fin-Oval Tube 열교환기에서 익형 와류발생체에 의한 Fin 표면에서의 국소 열전달에 대한 특성)

  • Shin, Seok-Won;Chung, In-Kee;Kim, Soo-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.757-766
    • /
    • 2009
  • In the present study, the effect of delta-wing vortex generators(DWVG) on the local heat transfer of the plate fin-oval tube was experimentally analyzed for Reynolds numbers for 2000, 2500 and 3200. The local heat transfer coefficient of the fin surface for four type DWVGs was measured by the naphthalene sublimation technique. As the results, the distribution of the heat transfer coefficient at rear of DWVGs showed longitudinal contours for common flow down DWVGs and wavy contours for common flow up DWVGs. The distribution showed many cell type contours at near wall and downstream for all DWVGs. Compared to case without DWVGs in present experimental tests, all DWVGs showed the best enhancement of heat transfer at Re=2000. Of 4 cases of DWVGs, D type showed the best enhancement of heat transfer.

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

An Experimental Study on Heat Transfer of Semi-cylindrical Surface by Impinging Water Jet (충돌수분류(衝突水噴流)에 의한 Semi-cylinder면(面)에서의 열전달(熱傳達)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Ohm, K.C.;Choi, G.G.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.6
    • /
    • pp.708-716
    • /
    • 1988
  • Local heat transfer coefficients were measured on semi-cylinders on which a circular water jet impinged in crossflow. The ratio of the semi-cylinder's diameter and the nozzle outlet diameter were varied parametrically, as were the Reynolds number and the supplementary water heights. The measurements showed that the circumferential distribution of the heat transfer coefficient peaked at the stagnation point. For a fixed supplementary water height, the peak heat transfer coefficient was not depend on the curvature of test specimen(d/D). Optimum height of supplementary water which brought about the augmentation of heat transfer at the stagnation point was S/D=1. The Nusselt number decreased as the circumferential distance or angle increased. The circumferential distribution of dimensionless heat transfer (Nu/Nus) was independent of d/D ($d/D{\geq}8.33$), but for the d/D<8.33, it was depended on d/D. At a fixed angle of specimen, dimensionless heat transfer (Nu/Nus) decreased as the ratio d/D increased. The extent of the decrease between d/D=6.67 and 8.33 was markedly greater than that between d/D=8.33 and 10, or d/D=10 and 11.67.

  • PDF