• Title/Summary/Keyword: Heat deterioration

Search Result 269, Processing Time 0.029 seconds

Tensile Properties of One-component Silicon Sealants by Heat Deterioration (1성분형 실리콘계 실리콘의 열 열화에 대한 인장 성능 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Miyauchi, Kaori
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.173-174
    • /
    • 2013
  • In this study, the tensile properties of sealants by heat deterioration were measured and analysed to gather the basic data of sealant because these studies do not have been investigated in Korea. Most general one-component silicone sealants were used and test specimen was I-type. The test parameters are sealant types which have different density and heat deterioration time in 80℃. As a result, the rat of reduction in area by heat deterioration was considerable increased at SR-A compared with SR-B. The tensile properties by heat deterioration decreased at SR-A because the specimen by deterioration occurred adhesive failure before tensile test. However, SR-B specimen was increased at maximum tensile stress but decreased at elongation in maximum tensile stress. Also, Maximum principal stress was measured at the edge of specimen by FEM simulation in order to find out failure points.

  • PDF

A Method for Detecting Engine Oil Deterioration using Heat Transfer (열전달을 이용한 엔진오일 열화 감지 방법)

  • Kim, Hyung-Pyo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.139-143
    • /
    • 2004
  • This paper presents a method that the engine oil condition is detected using a natural convection heat transfer in a engine oil. A sensor circuit maintains a constant temperature difference between a heat plate and engine oil for detecting a natural convection heat transfer rate on the constant temperature. The natural convection heat transfer rate is measured by a current through the heat plate of the sensor circuit. The sensor is tested by a fresh oil. 6,000 km and 10,000 km driven oil in the oil temperature range from $20^{\circ}C$ to $100^{\circ}C$. In the experimental result, when the current through the heat plate is altered by variation of a engine oil temperature and flows driven oil more than fresh oil, the sensor could inform a engine oil deterioration to a car driver.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

Study on Long-term Deterioration Properties of Porcelain Insulators with Aluminous System (알루미나계 자기애자의 장기 피로특성에 관한 연구)

  • Han, Se-Won;Cho, Han-Goo;Lee, Dong-Il;Cho, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.562-563
    • /
    • 2005
  • In case of aged porcelain, the failure in basic performance tests happened in cool-heat tests. Based on this characteristic, we studied the method predicting failure phenomena through more severe accelerated cool-heat ageing and accelerating thermal mechanical performance tests. Test results indicated that the thermal stress by temperature gradient was more severe parameter than thermal stress by quenching cycles within a category of standard or accelerating methods. And there is no the deterioration of statistic strength, but the deterioration of strength according to accelerating tests is serious.

  • PDF

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

Evaluation of correlations for prediction of onset of heat transfer deterioration for vertically upward flow of supercritical water in pipe

  • Sahu, Suresh;Vaidya, Abhijeet M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1100-1108
    • /
    • 2021
  • Supercritical water has great potential as a coolant for nuclear reactor. Its use will lead to higher thermal efficiency of Rankine cycle. However, in certain conditions heat transfer may get deteriorated which may lead to undesirable high clad surface temperature. It is necessary to estimate the operating conditions in which heat transfer deterioration (HTD) will take place, so as to establish thermal margins for safe reactor operation. In the present work, the heat flux corresponding to onset of HTD for vertically upward flow of supercritical water in a pipe is obtained over a wide range of system parameters, namely pressure, mass flux, and pipe diameter. This is done by performing large number of simulations using an in-house CFD code, which is especially developed and validated for this purpose. The identification of HTD is based on observance of one or more peak/s in the computed wall temperature profile. The existing correlations for predicting the onset of HTD are compared against the results obtained by present simulations as well as available sets of experimental data. It is found that the prediction accuracy of the correlation proposed by Dongliang et al. is best among the existing correlations.

A Study on Chemical Characteristic of Electrically and Thermally Treated MPPF Capacitor Elements (MPPF 커패시터의 전기적, 열적 열화시 소체의 화학적특성에 관한 연구)

  • Koo, Kyo-Sun;Song, Hyun-Seok;Lee, Dong-Zoon;Kwak, Hee-Ro;Shong, Kil-Mok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.227-230
    • /
    • 2001
  • This paper divides the factors of an accident into two parts, that are electrical deterioration and thermal deterioration, to analyze a characteristic of the factor of an accident which can break out in the capacitor of metal vaporized polypropylene film. For the purpose of creating capacitor which is caused by electric deterioration, we applied DC overvoltage, induced self-healing and breakdown from element. We applied gradual heat to get an element which is cause by thermal deterioration. The chemical structure of the shape and surface is analyzed by thermogravimetric analyzer (TGA), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrometer(FT-IR). As a result, the peak of methylene group came out, in case of electrical deterioration, as observing the self-healing point. However, the peak is disappeared in the heat treated element by 500[$^{\circ}C$], and the peak of carbonyl group which has C=O came out in case of thermal deterioration.

  • PDF

Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure $CO_2$ in a Vertical Annulus Passage (수직환형유로에서 상향유동 초임계압 $CO_2$의 열전달 특성)

  • Kang, Deog-Ji;Kim, Sin;Kim, Hwan-Yeol;Bae, Yoon-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3395-3400
    • /
    • 2007
  • Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical $CO_2$. The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400${\sim}$1200 kg/$m^2$s and the heat flux was chosen up to 150 kW/$m^2$. The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations.

  • PDF

Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube (원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발)

  • Kang, Deog-Ji;Kim, Hwan-Yeol;Bae, Yun-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

Study on Stability Analysis of Rock Slope Under Freezing-Thawing Cycle (동결융해작용을 받는 암반사면의 안정성해석에 관한 연구)

  • Baek, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.543-550
    • /
    • 2000
  • Rock slopes along the road or railroad are affected by temperature and therefore experienced iterative freezing-thawing process between winter and early spring. The purpose of this study is to analyze the stability of rock slopes which are influenced by the deterioration due to the freezing-thawing. The analysis is the homogenization method which evaluates the strength property of discontinuous rock mass, and as a strength failure criterion, Drucker-Prager failure criterion is used. The deterioration property of real rock is obtained by a freezing-thawing laboratory test of tuff and this property of deterioration is quantitated and used as a basic data of stability analysis for rock mass. To evaluate the deterioration depth due to the freezing-thawing in situ rock slope, one dimensional heat conductivity equation is used and as the result I can find that the depth of which is affected by a temperature. After the freezing-thawing depth of model slope is determined, we analyze the pattern of rock mass stength value of rock slope model which excesses the limit of self-load.

  • PDF