• Title/Summary/Keyword: Heat demand

Search Result 483, Processing Time 0.023 seconds

The development of microprocessor_based controller for the electrical boiler of heat storage type (축열식 전기보일러용 마이크로프로세서 제어장치개발)

  • Kim, J.S.;Park, J.W.;Joe, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.250-253
    • /
    • 1989
  • As the necessity of increasing the midnight base load is extensively increased, electric power companies have to increase the demand of midnight electrical power by lowering the electrical charge rate at midnight. One of the most widely used midnight equipments is the heat Storage type's electrical boiler. A Single chip microprocessor controller for the heat-storage type's electrical boiler is developed. This controller call reduce the undesirable peak load at the begining of midnight (i.e.11 P.M.) time band by using backward load control method. Futhermore, this controller enables reservation of heat storge and the effective heating control the field test has been done by use the boiler for 66$m^2$ with the heater of 21KW quality.

  • PDF

The Development of a Heat Balance Evaluation Program for the Main Steam Line of LNG Carrier (LNG선 주증기계통의 열평형산전용 전산프로그램 개발)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.854-861
    • /
    • 1998
  • The demand of LNG as a cheap and clean energy which does not cause an environmental problem has sharply been increased in Korea. In general LNG is stored in a cargo tank specially designed as a liquid state below $-162^{\circ}C$. The main engine of a LNG carrier is generally a steam boiler because LNG is a highly flammable fluid with the possibility of explosion. The main engine of a cargo ship has to be capable of the propulsion load and various auxiliary loads for the safe navigation since it is the primary energy source. Therefore the evaluation of a main boiler's energy capacity is a key design point in the planning of LNG carrier's construction. This research is to develop the computational program for the analysis of steam boiler Heat balance for LNG carrier.

  • PDF

Combined Heat Treating characteristics of Hot Work Tool Steel (열간금형 공구강의 복합열처리 특성에 관한 연구)

  • Kim, Y.H.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.315-323
    • /
    • 1998
  • This study has been conducted to develope the combined heat treating technique of gas carburising - gas nitriding and gas carburising to improve the hot working performance of type H3 hot work tool steel. Case depth and carbrides coarsening were increased with increasing carburising temperature and time, respectively. Surface hardness showed decreasing tendency with increasing 2nd tempering temperature after carburising treatment. After carburising, 2nd treatment at 500 to 600 was chosen according to a hardness demand of final product. High temperature tempering resistance showed more excellent quality during such carburising-nitriding or carburising than complex treatment as after conventional hardening.

  • PDF

Confirmation of Applicability of Heating and Curing Method of Concrete in Winter Using Electric Heating System (전기열풍기를 이용한 동절기 콘크리트 가열양생공법 적용 및 적정성 효과 검증)

  • Kim, Se-Jong;Park, Jong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.131-132
    • /
    • 2022
  • Looking at recent construction cases at winter construction sites, there is a risk that heat sources such as kerosene fans and fossil fuels (brown coal, molded carbon) used in concrete will cure rapidly, so in situations where further curing is impossible after formwork removal, the outer wall and the entire slab are exposed to rapid external deterioration, resulting in delays in concrete strength expression and until collapse accidents. In this study, we applied kerosene fans and tropical circulating electric heat fans mainly used as curing heat sources at construction sites, comparative analysis. also verified the performance of structures during concrete curing due to thermal convention / circulation performance, concrete demand strength expression, and implementation of electric heat fans by heavy disaster methods.

  • PDF

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.

Analysis of the Impact of the 8th Basic Plan for Long-term Electricity Supply and Demand on the District Heating Business Through Optimal Simulation of Gas CHP (가스 열병합발전 최적 시뮬레이션 분석을 통한 집단에너지 사업자에 미치는 8차 전력 수급계획의 영향 분석)

  • Kim, Young Kuk;Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.655-662
    • /
    • 2018
  • To respond effectively to climate change following the launch of the new climate system, the government is seeking to expand the use of distributed power resources. Among them, the district heating system centered on Combined Heat and Power (CHP) is accepted as the most realistic alternative. On the other hand, the government recently announced the change of energy paradigm focusing on eco-friendly power generation from the base power generation through $8^{th}$ Basic Plan for Long-term Electricity Supply and Demand(BPE). In this study, we analyzed the quantitative effects of profit and loss on the CHP operating business by changing patterns of the heat production, caused by the change of energy paradigm. To do this, the power market long-term simulation was carried out according to the $7^{th}$ and $8^{th}$ BPE respectively, using the commercialized power market integrated analysis program. In addition, the CHP operating model is organized to calculate the power and heat production level for each CHP operation mode by utilizing the operating performance of 830MW class CHP in Seoul metropolitan area. Based on this, the operation optimization is performed for realizing the maximum operating profit and loss during the life-cycle of CHP through the commercialized integrated energy optimization program. As a result, it can be seen that the change of the energy paradigm of the government increased the level of the ordered power supply by Korean Power Exchange(KPX), decreased the cost of the heat production, and increased the operating contribution margin by 90.9 billion won for the 30 years.

A Study on the Demand Modelling for District Cooling Energy Source (지역냉방 열원의 수요모형에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.11 no.4
    • /
    • pp.633-657
    • /
    • 2002
  • This study presents a demand modelling for landfill gas, which is used as alternative energy source for district cooling business. By analyzing the cost minimizing behavior of producer facing with three alternative energy sources such as electricity, cooling heat water, and gas, a demand function for landfill gas is derived from the optimal operating time of gas fired production facility, and estimated using unpublished data, which are associated with Seoul city's development plan for Sang-am area. The estimation results repeals that Seoul City could supply the land-fill gas of 13.76 million cubic meters each year at the price of about 16 won per cubic meters. However, if the investment costs associated with installation of gas collecting facilities are treated as sunk costs, annual amount of gas supplied is expected to increase to 14.22 million cubic meters at a lower unit price of 14.76 won.

  • PDF

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

PCM Property Measurement (PCM 소재 특성 측정)

  • Lee, Yong Woo;Jo, Ye Lim;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.51-54
    • /
    • 2014
  • Energy storage not only reduces the mismatch between supply and demand but also improves the performance and reliability of energy systems. The different forms of energy that can be stored, including mechanical, electrical and thermal energy. Phase change materials (PCM) are latent heat storage materials. A large number of phase change materials (organic, inorganic and eutectic) are available in any required temperature range. We concentrated on eutectic materials and made a eutectic by mixing urea and choline chloride. Heat capacity ($C_p$) is one of the most important properties to be considered when a process is developed using the eutectic and currently DSC (Differential Scanning Calorimetry) has been proved as an effective technique to measure the heat capacity. This study focused on measuring heat capacity ($C_p$) of the mixing urea and choline chloride by DSC.