• 제목/요약/키워드: Heat convection

검색결과 1,302건 처리시간 0.022초

단일(單一) 긴 수직평판(垂直平板)핀을 가진 수평전도관(水平傳導管)으로 부터의 자연대류(自然對流) (Conjugate Heat Transfer by Natural Convection from a Horizontal Heat Exchanger Tube with a Long Vertical Longitudinal Plate Fin)

  • 배대석;권순석
    • 설비공학논문집
    • /
    • 제1권1호
    • /
    • pp.64-72
    • /
    • 1989
  • Laminar natural convection heat transfer from a horizontal heat exchanger tube with one infinitely long vertical plate fin has been studied by a finite-difference numerical procedure. In predicting convective heat transfer from a circular tube, the thermal boundary condition at solid fluid interface is usually assumed to be isothermal. However, in reality, the thermal boundary condition is not isothermal, and the tube has the thickness and the conductivity. So the temperature at the interface is not known a priori to the calculation. This problem has the conjugate phenomena which occur between the tube conduction and external natural convection, and between the fin conduction and external natural convection. Numerical results are obtained to determine the effects of the conductivity of solid wall and the thickness of tube wall on heat transfer. It is found that the conduction causes significant influence on the natural convection heat transfer at low K and high ${\delta}$.

  • PDF

온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究) (A Calculation Method on Heat Flux from Ondol Floor Surface)

  • 손장열;안병욱;방승기
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구 (Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System)

  • 유승남;한귀영
    • 태양에너지
    • /
    • 제19권2호
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

표면 열전달율의 복사.대류성분 분리와 비정상 열부하 계산에 관한 연구 (A Study on the Radiation and Convection Component Separated from Surface Combined Heat Transfer Coefficient on Dynamic Heat Load Simulation)

  • 김영탁;최창호
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.1-9
    • /
    • 2005
  • The purpose of this paper was to analyze the influence of radiation and convection component separated from surface heat combined transfer coefficient on dynamic Heat load simulation. In general, it was not considered the mutual radiation of walls that heat load simulation calculated by surface combined heat transfer coefficient. In order to solve this problem, we had developed new simulation program to calculate radiation heat transfer and convection heat transfer respectively, and verified the influence of radiation component with this new program, in indoor heat transfer process.

원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향 (Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow)

  • 이상봉;이억수;김시영
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

대류와 복사 열원에 대한 특수방화복의 열보호 성능시험 비교 (Comparison of Thermal Protective Performance Test of Firefighter's Protective Clothing against Convection and radiation heat sources)

  • 김해형;유승준;박평규;김영수;홍승태
    • 한국화재소방학회논문지
    • /
    • 제31권2호
    • /
    • pp.17-23
    • /
    • 2017
  • 소방용 특수방화복의 열보호 성능 평가를 위해 대류와 복사 열원을 이용한 시험방법을 비교하였다. 특히 특수방화복을 구성하는 겉감, 중간층, 안감이 각각 열보호 성능에 미치는 영향을 대류와 복사 열원에 대해 비교하였다. 대류 열원에 대한 열보호 성능시험은 KS K ISO 9151, 복사 열원에 대한 시험은 KS K ISO 6942 그리고 대류와 복사열원을 함께 사용하는 시험은 KS K ISO 17492의 방법에 따라 수행하였다. 같은 입사 열유속 조건($80kW/m^2$)에서 시험했을 때 대류 열원에 비해 복사 열원에 대한 열전달지수($t_{12}$, $t_{24}$) 값이 보다 크게 나왔다. 이는 대류에 비해 복사에 의한 영향이 느리게 나타났음을 의미한다. 대류 열원에 대해서는 안감이 열보호 성능에 가장 크게 영향을 미쳤고 이어서 중간층, 겉감 순서였다. 그러나 복사 열원에 대해서는 안감, 겉감, 중간층 순서로 열보호 성능에 미치는 영향이 컸다. 대류와 복사는 열전달 메카니즘이 근본적으로 다르며, 열원이 달라지면 재질 구성에 따라 열보호 성능 결과가 다르게 나올 수 있다. 따라서 특수방화복의 열보호 성능을 평가하기 위해서는 대류 열원 뿐만 아니라 복사 열원에 대한 시험도 중요함을 확인하였다.

온도차 마랑고니 대류에 의한 열전달 촉진에 관한 연구 (A study of Heat Transfer Enhancement by Temperature Driven Marangoni Convection)

  • 김종윤;이동호;박종화;최국광
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.795-801
    • /
    • 2003
  • The primary object of this study is to obtain a basic knowledge of heat transfer enhancement mechanism as affected by temperature driven Marangoni convection. Experiments is achieved to visualize the enhanced heat transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also Nusselt Number is introduced for the relation of Marangoni Number.

강제 공냉 평판형 핀 방열판에 대한 실험적 고찰 (Experimental Investigation of Forced Air Cooled Plate Fin Heat Sinks)

  • 김태엽
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.428-437
    • /
    • 2019
  • Analytical thermal models based on average convection heat transfer are frequently used for the design and selection of forced air-cooled plate fin heat sinks. In this paper, a convection heat transfer model within a ±10% margin of error was presented through experimental investigation. Five types of heat sinks with inlet widths of 1.7-6.8 mm were tested at 50-160 W heat sources to derive and verify the model. Causes of error between the experiment and analytical thermal model were analyzed and listed to design the heat sink. Using proposed method and the lists to be considered in the paper, a quick and accurate heat sink design of the power-conversion system is expected.

적층형 Heat Sink의 열저항 특성에 관한 실험적 연구 (An Experimental Study on the Thermal Resistance Characteristics of Layered Heat Sink)

  • 김종하;윤재호;권오경;이창식
    • 설비공학논문집
    • /
    • 제13권4호
    • /
    • pp.271-287
    • /
    • 2001
  • This paper has been made to investigate the thermal performance characteristics for the several types of layered aluminum heat sinks with offset-strip fin. Heat sinks with different fin height, fin length, number of fin layer and slanted fin are prepared and tested for natural convection as well as forced convection. The experimental results for layered heat sink(LHS) are compared to those for advanced pin fin heat sink (PHS) so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for LHS are almost comparable to those of PHS under natural convection, and become 1.2∼1.5 times as high as those of PHS under forced convection situation. This study shows that fin height and number of fin layer re important parameters, which have a serious influence on thermal performance for layered heat sinks.

  • PDF

온간 단조 공정에서의 열전달 계수 (Heat transfer coefficients for F.E analysis in warm forging processes)

  • 강종훈;고병호;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF