• Title/Summary/Keyword: Heat and mass transfer performance

Search Result 331, Processing Time 0.023 seconds

Evaporation heat transfer characteristics inside the U-bend of the smooth and the microfin tube using alternative refrigerant (대체냉매를 사용한 평활관 및 마이크로핀관 곡관부내 증발 열전달 특성)

  • Jo, Geum-Nam;Kim, Byeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1207-1217
    • /
    • 1997
  • The present work experimentally investigated the effects of mass flux, heat flux, inlet quality on the heat transfer performance inside the U-bend of smooth and microfin tube using R-22 and R-407C refrigerants. The parameters were 200 and 400 kg/m$^{2}$ s for mass flux, 6 and 12 kw/m$^{2}$ for heat flux, 0.1 and 0.2 for inlet quality under the pressure of 0.65 MPa. The apparatus consisted of the test section of four straight sections and three U-bends, preheater, condenser, refrigerant pump, mass flow meter etc. The average heat transfer coefficient at the downstream straight section after U-bend was affected by U-bend due to the centrifugal force and mixing of two-phase flow in the U-bend. The average heat transfer coefficient at the U-bend was 4 ~ 33 % higher than that at the straight section. The average heat transfer coefficients were affected in the order of mass flux, heat flux and inlet quality. The average heat transfer coefficients in the microfin tube were lager by 19 ~ 49% and 33 ~ 69% than that in the smooth tube at the straight section and at the U-bend separately. The average heat transfer coefficients for R-407C were larger by 33 ~ 41% and 17 ~ 29% than that for R-22 in the smooth tube and the microfin tube separately.

Experimental Study on Mass Transfer Rate at the Packed Column of Solar Cooling Liquid Desiccant System Using Counter Flow Configuration

  • Hengki R, R.;Choi, K.H.;Yohana, Eflita;Sukmaji, I.C.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-161
    • /
    • 2009
  • Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed column and the heat transfer and mass transfer will occur. This proposal is try study the mass transfer and heat transfer inside the packed column of dehumidifier and regenerator systems. And later on, the rates of dehumidification and regeneration that were affected by desiccant flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems.

  • PDF

Validity of Inter-Particle Models for the Mass-Transfer Kinetics of a Fin-Tube-Type Adsorption Bed (핀-튜브형 흡착탑 해석시 입자간 물질전달 모델의 타당성 검증)

  • Ahn, Sang Hyeok;Hong, Sang Woo;Kwon, Oh Kyung;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.660-667
    • /
    • 2013
  • This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube-type adsorption bed using a two-dimensional numerical model with silica-gel and water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of inter-particle models used to simulate mass-transfer kinetics were examined, such as a constant pressure model and non-constant pressure model, and the valid ranges of the diffusion ratio for each model are proposed. The COP and SCP have been numerically calculated as the performance indexes according to the diffusion ratio. The constant pressure model, which is commonly used in previous research, was found to be valid only in a limited range of diffusion ratio.

Performance and heat transfer of an air conditioning system filled with hydrocarbon refrigerants (탄화수소 냉매를 사용한 냉방시스템의 성능 및 열전달 특성)

  • Jang, Yeong-Su;Kim, Min-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.713-723
    • /
    • 1997
  • Performance and heat transfer characteristics of an air conditioning system filled with hydro- carbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as working fluids in the air conditioning system. Performances of each refrigerant are obtained at several compressor speeds and temperature levels of secondary heat transfer fluids. The cooling capacity and the coefficient of performance are obtained as test results. Heat transfer data of selected refrigerants are achieved from overall conductance measurement. Average heat transfer coefficients at different mass fluxes are shown and they are also displayed for different heat capacities of the system. Experimental results show that some hydrocarbon refrigerants have better characteristics than R22.

Performance of adsorption heat pump with radial shape adsorber heat exchanger for air cooling (공냉식 방사형 열교환기를 갖는 흡착식 히트펌프의 성능)

  • Baek, N.C.;Yang, Y.S.;yoon, E.S.;Lee, J.K.;Joo, M.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.73-81
    • /
    • 1997
  • In this experimental study, the air cooling radial shape heat exchanger which influences on the COP and the cooling capacity by heat and mass transfer rate in the adsorbent bed was designed and applied to test its performance for adsorption heat pump(AHP). Zeolite-water was used for the adsorbent-adsorbat pair. As a result, the cooling COP and a cycle period of this adsorption heat pump are 0.28 and 2 hours, respectively, on the condition of none heat recovery from the adsorption reactor(absorber). The other results and recommendations are mainly related to improving the heat and mass transfer inside the absorber to reduce a cycle period.

  • PDF

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

Experimental Study of Air-cooled Condensation in Slightly Inclined Circular Tube (경사진 원형관에서의 공냉응축에 관한 실험적 연구)

  • Kim, Dong Eok;Kwon, Tae-Soon;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, the experimental investigation of air-cooled condensation in slightly inclined circular tubes with and without fins has been conducted. In order to assess the effects of the essential parameters, variable air velocities and steam mass flow rates were given to the test section. The heat transfer performance of air-cooled condensation were dominantly affected by the air velocity, however, the increase of the steam mass flow rate gave relatively weaker effects to total heat transfer capability. And in the experimental cases with the finned tube, the total heat transfer rate of the finned tube was significantly larger than that of the flat tube. From those results, it can be confirmed that the most important parameter for air-cooled condensation heat transfer is the convective heat transfer characteristics of air. Therefore, for the well-designed long-term cooling passive safety system, the consideration of the optimal design of the fin geometry is needed, and the experimental and numerical validations of the heat transfer capability of the finned tube would be required.

Performance characterization of liquid desiccant system with extended surface (확장표면을 적용한 액체식 제습시스템의 성능특성에 관한 연구)

  • Jang, Young-Soo;Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.639-644
    • /
    • 2009
  • This study presents the new idea of liquid desiccant system with extended surface to reduce the system size. The extended surface is inserted between vertical cooling/heating tubes to increase the mass transfer area, and the liquid desiccant flows through the tube wall and the extended surface. Mathematical models for heat and mass transfer between liquid desiccant and air stream at tube wall and extended surface are provided. Dimensionless design parameters governing heat and mass transfer phenomena around the tube and the extended surface are identifier, and dimensionless operating parameters depicting system operating condition including flow rate ratio between dehumidification/regeneration processes, and mass flow rate ratio between air stream and liquid desiccant are explained. The effects of the parameters on system performance are summarized.

  • PDF

Dialysis in parallel-flow rectangular membrane modules with external reflux for improved performance

  • Yeh, Ho-Ming;Cheng, Tung-Wen;Chen, Kuan-Hung
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.159-169
    • /
    • 2010
  • The effect of external recycle on the performance of dialysis in countercurrent-flow rectangular membrane modules was investigated both theoretically and experimentally. Theoretical analysis of mass transfer in parallel-flow device with and without recycle is analogous to heat transfer in parallel-flow heat exchangers. Experiments were carried out with the use of a microporous membrane to dialyze urea aqueous solution by pure water. In contrast to a device with recycle, improvement in mass transfer is achievable if parallel-flow dialysis is operated in a device of same size with recycle which provides the increase of fluid velocity, resulting in reduction of mass-transfer resistance, especially for rather low feed volume rate.

Thermal Characteristics of Discrete Heat Sources Using Coolants

  • Choi, Min-Goo;Cho, Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • The present study investigated the effects of experimental parameters on the thermal characteristics of an in-line 6x1 array of discrete heat sources for a test multichip module using water, PF-5060 and paraffin slurry. The parameters were heat flux of 10-40W/$cm^2$. Reynolds number of 3,000~20,000 and mass fraction up to 10% for paraffin slurry The size of paraffin slurry was within 10~40$\mu$m before and after experiments. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row (five or seven times of the chip length) and the paraffin slurry showed effective cooling performance at the high heat flux The paraffin slurry with the mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section are considered simultaneously. The experimental data at the fourth and sixth rows are best agreed with the values predicted by the Malina and Sparrow`s correlation among other correlations, and the empirical correlations for water and 5% paraffin slurry were obtained at the first and sixth rows when the channel Reynolds number is over 3,000.

  • PDF