• Title/Summary/Keyword: Heat aging

Search Result 580, Processing Time 0.021 seconds

Aging Characteristics of EPDM based Insulating Materials Depending on Curing Systems (가교방식에 따른 EPDM 절연재료의 열화특성)

  • Lee, C.H.;Jeon, Y.J.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1697-1699
    • /
    • 1996
  • EPDM compound can be cured with either the sulfur and peroxide based systems. In this study, heat resistance and weatherability of EPDM compounds depending on curing systems were investigated. The test results showed that the peroxide-cured EPDM was more resistant to heat ageing and UV photo-degradation than the sulfur-cured EPDM and it is due to C-C bond is more stable than C-S, S-S bond.

  • PDF

Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy (AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성)

  • H. J. Kim;J. H. Bae;Y. M. Kim;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

Small Punch Test for the Evaluation of Thermal Aging Embrittlement of CF8 Duplex Stainless Steel

  • Cheon, Jin-Sik;Kim, In-Sup;Jang, Jae-Gyoo;Kim, Joon-Gu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.79-84
    • /
    • 1996
  • Small punch test was performed on CF8 duplex stainless steel aged at 370 and 400$^{\circ}C$ up to 5,000 h to evaluate the degree of the thermal aging embrittlement. At room temperature, the SP load-displacement curve was in a similar shape to those of ferritic steels and had a good reproducibility in spite of two-phase structure. The aging heat treatment resulted in a slight increase of the yield strength. As test temperature was lowered, the SP load showed a sudden drop followed by serrations before the SP specimen was fractured, resulting from the cracking of ferrite phase. The extent of thermal embrittlement was assessed in terms of the SP energy. Aging treatment at higher temperature led to a larger shift in the transition temperature and the corresponding change in the fracture mode. The main cause of the degradation was the embrittlement of ferrite phase. Additionally the phase boundary separation profoundly contributed to the degradation of the specimen aged at 400$^{\circ}C$.

  • PDF

Investigation on Age-hardening characteristic of thixo and rheocast by using Nano/Micro-probe Technology (나노/마이크로 프로브 기술을 통한 틱소/레오 캐스트의 시효경화 특성 조사)

  • Cho, S.H.;Lee, C.S.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.322-325
    • /
    • 2006
  • The nano/microstructure and mechanical properties of the eutectic regions in thixo and rheo cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM).Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers, however Si particles of network in eutectic region was formed quickly with aging time increase in thixo-cast. The aging responses of the eutectic regions in both the thixo and rheo cast A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, the peak was obtained at the same aging time of 10 h.

  • PDF

Lifetime prediction for interfacial adhesion of Carbon/Cork composites with an accelerated aging test

  • Lee, Hyung Sik;Chung, Sang Ki;Kim, Hyung Gean;Park, Byeong Yeol;Won, Jong Sung;Lee, Seung Goo
    • Carbon letters
    • /
    • v.28
    • /
    • pp.9-15
    • /
    • 2018
  • In the aerospace field, Carbon/Cork composites have been used for rocket propulsion systems as a light weight structural component with a high bending stiffness and high thermal insulation properties. For the fabrication of a carbon composite with a heat insulation cork part, the bonding properties between them are very important to determine the service life of the Carbon/Cork composite structure. In this study, the changes in the interfacial adhesion and mechanical properties of Carbon/Cork composites under accelerated aging conditions were investigated. The accelerated aging experiments were performed with different temperatures and humidity conditions. The properties of the aged Carbon/Cork composites were evaluated mainly with the interfacial strength. Finally, the lifetime prediction of the Carbon/Cork composites was performed with the long-term property data under accelerated conditions.

Strengthening method of a porcelain fused Au-Pt-Cu-0.5In alloy (도재소부용 금속구조물의 강화방법)

  • Lee, Sang-Hyeok;Doh, Jung-Mann;Jung, Ho-Yeon
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • The microstructure and hardness of a porcelain fused Au-Pt-Cu-In alloy was investigated using optical microscopy, secondary electron microscopy, electron probe microanalyzer, transmission electron microscope, and vickers hardness. The hardness of the heat-treated Au-Pt-Cu-In quartenary alloy reached a maximum value in 30 min at 550$^{\circ}C$ in the range of 150 to 950$^{\circ}C$. In the aged Au-Pt-Cu-0.5In alloy at 550$^{\circ}C$, the hardness of the alloy rapidly increased until 30min with increasing aging time and after that it was remained nearly constant value. Based on above results, glazing and final aging of the porcelain fused Au-Pt-Cu-0.5In alloy were performed at 920 and 550$^{\circ}C$, respectively. The hardness of Au-Pt-Cu-0.5In alloy glazed at 920$^{\circ}C$ was 90 Hv and that of the alloy aged for 30 min at 550$^{\circ}C$ increased to 160 Hv. This indicates that a ceramic-metal crown with high strength can be manufactured using the glazing at 920$^{\circ}C$ and followed final aging at 550$^{\circ}C$ for 30 min.

  • PDF

Effects of Rare Earth Metals Addition and Aging Treatment on the Corrosion Resistance and Mechanical Properties of Super Duplex Stainless Steels

  • 박용수;김순태;이인성;송치복
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.309-309
    • /
    • 1999
  • Effects of rare earth metals addition and aging treatment on corrosion resistance and mechanical properties of super duplex stainless steels were investigated using optical/SEM/TEM metallographic examination, an X-ray diffraction test, a potentiodynamic anodic polarization test and a tensile test. The performance of the experimental alloy with 0.32% REM addition was compared with commercial super duplex stainless steel such as SAF 2507 when they were exposed to solution annealing heat treatment and aging treatment. The corrosion resistance in CF environments and mechanical properties of the experimental alloy were found superior to those of the commercial duplex stainless steel. The REM with larger atomic radii than those of Cr, Mo and W may fill vacancies inside the matrix and around the grain boundaries, retarding formation of harmful intermetallic σ and χ phases. In addition, fine REM oxides/oxy-sulfides (1-3㎛) seemed to enhance the retardation effects. With REM additions, strength and ductility increased due to the phase and grain refinement caused by fine REM oxides and oxy-sulfides.

Effect of Additional Cu and Natural Aging Treatment on Thermal Diffusivity in the Al-Mg-Si Alloy (Al-Mg-Si 합금에서 Cu 첨가와 자연시효 열처리가 열확산도에 미치는 영향)

  • Kim, Yu-Mi;Choi, Se-Weon
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.528-534
    • /
    • 2021
  • To confirm effects of natural and artificial aging of precipitate on thermal diffusivity and hardness, the studied Al-Mg-Si alloy were manufactured by gravity casting method with 0.6 wt% and 1.0 wt% additional Cu element. The samples were used for measuring thermal diffusivity and hardness. The addition of Cu, promoted by intermediates such as Q'' and θ'' phases, contributing to the improvement of hardness and high-temperature thermal diffusivity. The natural aging decreased the hardness of the Al-Mg-Si-Cu alloys with increasing time, but did not affect the thermal diffusivity.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

The Effect of Heat treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼마모특성에 미치는 열처리조건의 영향)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metallurgy(PM-HSS) had been evaluated in previous paper. The wear properties of materials, in fact, have been a]so influenced by heat-treating conditions. In this paper, the effects of heat-treating conditions on wear properties of PM-HSS have been evaluated. The wear tests have been performed as same conditions as previous paper using PM-HSS(5%Co-1%Nb) heat-treated under different quenching and tempering temperature. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However tempering temperature is not sensitve to the wear resistance in range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms of quenching aging in addition to dispersion-hardening is improved.

  • PDF