• Title/Summary/Keyword: Heat affect zone

Search Result 62, Processing Time 0.022 seconds

WELDING HEAT-INPUT LIMIT OF ROLLED STEELS FOR BUILDING STRUCTURES (SN400BAND SN490B) BASED ON SIMULATED HAZ TESTS

  • Sakino, Yoshihiro;Horikawa, Kohsuke;Kamura, Hisaya
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.714-719
    • /
    • 2002
  • In The Great Hanshin-Awaji Earthquake, the general yield brittle fractures were observed in beam-column connections of steel building frames. Among many influencing factors which affect the general yield brittle fracture, it can be considered that fracture toughness has substantial effects. Some studies are making clear the required toughness for the base metal and the weld metal, but general values are not proposed. Moreover, it seems that it is also important to pay attention to the toughness decrease in the weld heat affected zone (weld HAZ), because the toughness decrease occurs in the HAZs of mild steel. In this paper, the relationship between toughness of simulated HAZs of "the rolled steels for building structures (SN)" and the weld heat-input limit of the SN steel are investigated, in an attempt to provide the required toughness for HAZs. The relationships between the increase of the hardness value and toughness, and changes of microstructure after weld heat-input are also discussed. The main results are summarized as follows. 1) The SN400B can keep its toughness at higher heat-inputs compare to the SN490Bs. 2) The steel grade, which becomes harder than other steel grades at the same heat-input, has smaller absorbed energy and smaller limit of heat-input. 3) The weld heat-input limit of the SN400B and the SN490B are proposed separately for some required toughness values.

  • PDF

Temperature Distribution Analysis of Welding Parts in Ultrasonic Welding by Using FEM (FEM을 이용한 초음파 용착부의 온도분포 해석)

  • Kang, Eun-Ji;Min, Kyung-Tak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • Ultrasonic metal welding, unlike the conventional welding techniques, does not require an external heat source, welding rod, or filler metal. Therefore, ultrasonic metal welding is not only economical but also environment-friendly, and hence, it has been receiving much attention. In ultrasonic welding, heat is generated because of the plastic deformation and the friction between both surfaces of the welded materials. It is important to identify the heat-affected zone by measuring the temperature generated at the weld. In this study, the effects of the welding pressure, welding time, and vibration amplitude on the temperature distribution in the weld were evaluated by performing a transient thermal analysis of the heat generated during ultrasonic metal welding. The experimental results indicated that the temperature of the weld tends to increase with the welding time and vibration amplitude. However, an increase in the pressure does not affect the temperature of the weld largely.

The Low Height Looping Technology for Multi-chip Package in Wire Bonder (와이어 본더에서의 초저 루프 기술)

  • Kwak, Byung-Kil;Park, Young-Min;Kook, Sung-June
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

A Study on Heat Transfer Characteristics of Automotive Engine Cooling Control System (자동차용 엔진 냉각시스템의 열전달 특성에 관한 연구)

  • Park, Kyoung-Suk;Won, Jong-Pil;Jung, Dong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1183-1194
    • /
    • 1998
  • This paper describes a theoretical model developed for analyzing the heat transfer of automotive cooling systems. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through cylinder wall in engine cylinder was analyzed by using a two zone combustion model. This paper studied how cooling condition would affect engine heat release rate and measured temperature distribution of coolant in water jacket.

Laser Cutting of Flexible Printed Circuit Board in Liquid (연성인쇄회로기판의 액중 레이저 절단)

  • Kim, Teakgu;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.56-62
    • /
    • 2013
  • The laser cutting process which is flexible and rapid usually provides a better result in cutting of flexible printed circuit boards (FPCB). However, circuit-short by the re-deposition of debris from laser ablation or its heat affect zone (HAZ) on the cutting surfaces can be a problem. A laser cutting process of FPCB in the presence of liquid can minimize these negative effects. The temperature distribution of copper and polymer parts of FPCB was analyzed with numerical simulation and the experimental results were presented to evaluate this process. Generally, laser cutting under liquid has advantages of less re-deposition of carbides and less HAZ on the cutting edges. However, bubble generation and laser beam control through the liquid media should be considered carefully to obtain a successful result.

Fracture Toughness Comparison of Weld Metal and Heat-Affected Zone of Brittle Crack Arrest Steel Welding Joint (후물재 용접부의 용착금속과 열영향부의 파괴 인성 비교 연구)

  • Choi, Kyung-Shin;Kong, Seok-Hwan;Seol, Sang-Seok;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.8-14
    • /
    • 2021
  • Even welds that have passed non-destructive testing in the case of brittle crack arrest steel materials will actually have very fine weld defects. Based on studies showing that these defects adversely affect the structure if subjected to a certain period of load, the following conclusions were obtained by conducting CTOD tests on welding joints of high-strength BCA materials, structures comprising the upper decks of a large container vessel. First of all, the fatigue pre-cracking in the weld metal and heat affected areas was tested and the behavior was identified. Both parts of the welding joint are allowable range for the class regulations. In addition, CTOD results showed that the CTOD value in the heat affected area was more than 0.5 times higher than in the weld metal area.

Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W (Al 7075의 마찰교반 용접부 특성에 관한 연구)

  • Jang Seok-Ki;Jeon Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • This paper shows mechanical Properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool dimensions with $6.35mm_t$ aluminum 7075-T651 alloy plate. It apparently results in defect-free weld zone in case transition speed was changed to 15mm/min 61mm/min and 124mm/min under conditions of tool rotation speed such as 800rpm. 1250rpm and 1600rpm respectively with tool's Pin diameter 40mm and 60mm. The optimum mechanical property, ultimate stress,${\sigma}_Y=470Mpa$ is obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin. shoulder dia. $20{\phi}mm$ pin dia. $6{\phi}mm$ and pin length 6mm. The full-screw type and the half-screw type pin shows the similar behaviors of weldability. It is found that the size of nugget is depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W (Al 7075의 마찰교반 용접부 특성에 관한 연구)

  • Jang, Seok-Ki;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.348-358
    • /
    • 2005
  • This paper showed mechanical properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool with 6.35$mm_t$ aluminum 7075-T651alloy plate. It resulted in defect-free weld zone in case tool rotation speed was 800rpm, 1250rpm and 1600rpm respectively that transition speed was changed to 15mm/min, 61mm/min and 124mm/min with tool's pin diameter 4${\Phi}$mm and 6${\Phi}$mm. The optimum mechanical property, ultimate stress,${\sigma}_Y$=470Mpa was obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin, shoulder dia. 20${\Phi}$mm, pin dia.6${\Phi}$mm and pin length 6mm. The full-screw type and the half-screw type pin showed the similar behaviors of weldability. It is found that the size of nugget was depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

  • PDF

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Understanding the Material Removal Mechanisms of Abrasive Water Jet Drilling Process by Acoustic Emission Technique

  • Kwak, Hyo-Sung;Kovacevic, Radovan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.40-52
    • /
    • 1998
  • Among the non-traditional machining methods, Abrasive waterjet machining process shows big promise in drilling difficult-to-machine materials due to its numerous advantages such as absence of heat affect zone and thermal distortion. Acoustic emission signal technique is used to understand about material removal mechanisms during abrasive waterjet drilling process. More information about the drilling process is derived through frequency decomposition of auto regressive moving average modeling representing acoustic emission signals.

  • PDF