• Title/Summary/Keyword: Heat Transfer performance

Search Result 1,897, Processing Time 0.029 seconds

Performance Analysis of a Desiccant Rotor for Rotational Period in a Desiccant Cooling System (제습냉방시스템의 제습로터 회전주기변화에 따른 제습성능해석)

  • Pi, Chang-Hun;Kang, Byung-Ha;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.523-531
    • /
    • 2012
  • The performance simulation of a desiccant rotor, which is a core component of a desiccant cooling system, was conducted on the basis of a theoretical solution of the heat and mass transfer process in the rotor. The simulation model was validated by comparing simulation results with experimental data; reasonable agreement was observed. The effect of the rotation speed on the performance of the desiccant rotor was investigated for various operation conditions: temperature (50 to $70^{\circ}C$), humidity ratio (0.01 to 0.02 kg/kg DA), and flow rate of regeneration air. The optimum rotation speed was determined from the maximum moisture removal capacity (MRC) of the desiccant rotor, and it was found to vary with the operation conditions. Further, the correlation for the optimum rotation speed was determined by regression analysis.

Thermal Performance Evaluation of Junction Thermal Bridge according to Installation Position of Window

  • Lee, Soo-Man;Kim, Dong-Yun;Ahn, Jung-Hyuk;Eom, Jae-Yong;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: "Building energy design standard" is used to limit the thermal transmittance of building in Korea. However, it only covers the insulation standard for each appropriate elements of a building, not the thermal performance of Junction thermal bridge of windows and doors installed in wall. Therefore in this study, we have evaluated the thermal performance of Junction thermal bridge depending on installation method and position of windows and provide it as design data. Method: We analyzed heat transfer of 4-Track sliding window and tilt & turn triple glazed window that are placed in the first class category on window energy efficiency rating using Window 7.4 and Therm 7.4. Result : First, linear thermal transmittance of 4-Track sliding window differs by 2.2 times or more depending of installation method and location. It is higher than the linear thermal transmittance, 0.01W/mK, proposed by Passivhaus. Second, linear thermal transmittance of Tilt & turn triple glazed window differs by 7.7 times or more depending of installation method and location. The average linear thermal transmittance was less than 0.01W /mK when windows were installed on the internal wall insulation by the fixed hardware attachment method. Third, the thermal losses of a window caused by a junction thermal bridge are inversely proportional to the window area and converge gradually as the area increased.

A Study on the Characteristics of Temperature Distribution Related to Geometry of Tube in Hydrogen Storage Vessel (수소 저장용 탱크의 튜브 형상에 따른 온도분포 특성에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;JEON, KYUNG SOOK;KIM, JAE KYU;PARK, JOON HONG;CHOI, JEONGJU
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.205-211
    • /
    • 2021
  • Recently, it is necessary for study on renewable energy due to environmental pollution and fossil fuel depletion. Therefore, in this study, the filling temperature according to the nozzle geometry was evaluated based on the limit temperature specified in SAEJ2601 for charging hydrogen, a new energy. There are three types of nozzles, normal, angle and round, fixed the average pressure ramp rate at 52.5 MPa/min, and the injection temperature was set at 293.4 K. As a result, the lowest temperature distribution was found in the round type, although the final temperature did not differ significantly in the three types of nozzles. In addition, Pearson's coefficient was calculated to correlate the mass flow rate with the heat transfer rate at the inner liner wall, which resulted in a strong linear relationship of 0.98 or higher.

A Study on the Fabrication of Surface Heating Panel Using SiC Ceramics (SiC계 세라믹을 이용한 면상발열 판넬 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 2016
  • In recent years, research and development has been carried out in order to increase the economical efficiency and stability in terms of efficient use of energy for the heating apparatus. Especially, technology development for high performance and new functional materials is actively being carried out. This paper focuses on the development of exothermic products with excellent energy transfer characteristics. The heating element used for bedding or mattress uses a heating wire. Since the heating wire is thin, the distribution of heat is concentrated only around the heating wire,. In addition, electromagnetic induction is harmful to the human body and energy consumption is high. Therefore, it is aimed to develop a planar heating panel using SiC ceramics which can radiate far-infrared rays and anions to be harmless to the human body, but also has excellent heat conduction to enhance energy efficiency.

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Development and Application of a Computer Program for the Analysis of Heat Transfer and Fluid Flow of Water Body: Lake and Primary Clarifier (水體 熱流動 數値解析 프로그램 개발 및 응용 : 湖沼, 일차침전조)

  • 박병수;김경미
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.141-154
    • /
    • 1996
  • A computer program is developed in order to investigate the fluid flow and heat ransfer of a water body in a 2-D vertical rectangular coordinate. The specific purpose of this study is to obtain a physical insight of several fluid flow problems which occur in a lake and the water and wastewater treatment facility like a primary clarifier. The performance of computer program developed is successfully evaluated by the comparison of other two experimental and computational data in open literature : the first comparison is made against the numerical data associated with the cooling water discharge and the other is numerical and experimental works for the primary clarifier of Sarina City at Ontario. Further, the computer program is applied to investigate the feature of lake flow, say lake turnover, and 2-D vertical channel flow in terms of temperature, wind velocity and flow rate, etc. The computational results appear to be physically acceptable and consistent. The computer program developed in this study shows the possibility of the viable tool to figure out the flow characteristics of water reservoir.

  • PDF

Incorporation of Droplet Breakup Model at Spacer Grid into RELAP5/ MOD2 (핵 연료봉 지지격자에 의한 Droplet Breakup Model의 RELAP5 / MOD2 삽입)

  • Park, Jong-Ho;Lee, Sang-Yong;Kim, Si-Hwan;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.326-336
    • /
    • 1990
  • Recent experiments show the existence of spacer grid improves the heat removal from the fuel rods during the reflood phase of LOCA. The local heat transfer within and downstream of the grid is increased due to the earlier quenching than rod surface, shattering of the entrained droplets into smaller ones which can be more easily evaporated and enhanced turbulent effect. Therefore, the consideration of these phenomena is necessary for the DFFB regime which prevails above the water level during the reflood. In this paper, droplet breakup model at spacer grid has been developed and incorporated into RELAP5/MOD2. Verification calculations are carried out for FEBA tests which examine the thermalhydraulic performance of grid spacer during reflood.

  • PDF

A Study on the Flux and Heat Transfer of Direct Contact Type Module Applied for a Pilot Scale Membrane Distillation Process (파일럿 규모 막 증발 공정 적용을 위한 직접 접촉식 모듈의 투과유속 및 열에너지 이동에 관한 연구)

  • Kim, Seung Hwan;Kim, Se Woon;Lee, Dong Woo;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • In this study, a direct contact membrane module was manufactured to be used in a pilot scale membrane distillation process to treat $3m^3/day$ of the digestate produced from anaerobic digestion of livestock manure. In order to investigate the performance of the membrane module, permeate flux was measured with and without spacer inside the module under various condition of temperature difference and cross flow velocity (CFV) through the membrane surfaces. Flux recovery rate after chemical cleaning was also investigated by applying three different cleaning methods. Additionally, thermal energy consumption was theoretically simulated based on actual pilot plant operation conditions. As results, we observed flux of the module with spacer was almost similar to the theoretically predicted value because the installation of spacer reduced the channeling effect inside the module. Under the same operating condition, the permeate flux also increased with increasing temperature difference and CFV. As a result of chemical in-line cleaning using NaOCl and citric acid for the fouled membranes, the recovery rate was 83.7% compared to the initial flux when NaOCl was used alone, and 87% recovery rate was observed when only citric acid was used. However, in the case of using only citric acid, the permeate flux was decreased at a rapid rate. It seemed that a cleaning by NaOCl was more effective to recover the flux of membrane contaminated by the organic matter as compared to a cleaning by citric acid. The total heat energy consumption increased with increasing CFV and temperature difference across the membrane. Thus, further studies should be intensively conducted to obtain a high permeate flux while keeping the energy consumption to a minimum for a practical application of membrane distillation process to treat wastewater.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

Heat Transfer Characteristics under Recirculation zone of Ramjet Combustor (재순환 영역이 램제트 연소실에서의 열전달 특성에 미치는 영향)

  • Lee, Keon-Woo;Oh, Min-Keun;Ham, Hee-Chul;Hwang, Ki-Young;Cho, Hyung-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.9-17
    • /
    • 2007
  • This experimental study has been conducted to investigate the effect of the recirculation zone on the multi-slot film cooling in the ramjet combustor. The recirculation zone which is generated by the protrusion tip on the entrance of the coolant flow path affects on the first slot. Velocity fields, dimensionless temperature fields and adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by shear layer and high turbulence intensity between separated flows and coolant flows.