• Title/Summary/Keyword: Heat Transfer coefficient

Search Result 1,589, Processing Time 0.024 seconds

Heat Transfer Enhancement of a Piezoelectric Fan for Cooling of Electronic Devices (전자기기 냉각용 압전팬의 열전달 향상)

  • Kim, Eun-Pil;Yoon, Jung-In
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • Piezoelectric fans are thin elastic beams whose vibratory motion is actuated by means of a piezoelectric material bonded to the beam. These fans have found use as a means to enhance convective heat transfer while requiring only small amounts of power. This study presents new types of models with heat sink having air passage and investigates experimentally their heat transfer characteristics. From the comparison results for four models, the heat transfer coefficients of model 1 are approximately 44~66% higher than those of the reference model 0. The model 1 show the best overall performance about heat transfer and cooling capability. As shown in above results, it is necessary to design the heat sink with air pass for cooling of electronic devices, in order to increase the convective heat transfer coefficient of a piezoelectric fan for electronic cooling.

Heat Transfer Characteristics on Design Conditions of Finned-Tube Evaporators (설계조건에 따른 핀-튜브 증발기의 열전달 특성)

  • 강희정;이윤수;권영철;장근선;김영재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • To investigate the design effects of a heat exchanger on a tube type, a tube circuit and a fin pitch, an experimental study on the heat transfer characteristics of finned- tube evaporators was performed. The refrigerant was R-22. A refrigerant loop was established to measure the heat transfer rate, the air heat transfer coefficient. The experimental results showed that the heat transfer characteristics of the evaporators were affected by the design parameters. And the heat transfer rate of the slit fin was better about 25%, compared to those of the louver fin. In the present experimental range, the heat transfer performance with the straight tube circuit was more remarkable than that of the zigzag tube circuit, as seen from temperature variations of the evaporator exit. $\jmath$-factor on the tube type, the tube circuit and the fin pinch decreased, as increasing Reynolds number.

Simultaneous determination of reference free-stream temperature and convective heat transfer coefficients (자유흐름온도와 대류열전달계수를 동시에 측정할 수 있는 실험 방법에 대한 연구)

  • Jeong, Gi-Ho;Song, Ki-Bum;Kim, Kui-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.419-424
    • /
    • 2001
  • This paper deals with the development of a new method that can obtain heat transfer coefficient and reference tree stream temperature simultaneously. The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and tree stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

  • PDF

A Development of Heat Exchanger by using Small Bore Two-Port Tube (연결세경관을 이용한 열교환기의 개발)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • The fin and tube type heat exchangers widely used in air conditioners have been developed to improve on the heat transfer performance and compactness. This study presents the new type of tube for the heat exchanger to improve the heat transfer performance by increasing the heat transfer area per unit volume in the air-conditioner heat exchanger. The new type tube can be used for mechanical expansion facility, due to the two-port copper tube. Numerical calculation shows that the heat exchanger using the two-port copper tube outperforms the conventional heat-exchanger using a circular copper tube, in terms of the increased heat transfer coefficient and higher pressure drop. The calculation results were experimentally validated and are in agreement with the experimental results. Compared to the heat exchanger using a conventional circular tube, the heat exchanger with a two-port tube increased the heat transfer coefficient up to 21%, and the pressure dropped up to 16%.

Heat and Mass Transfer Characteristics of LiCl Aqueous Solution for a Plate Heat Exchanger Type Dehumidifier (판형 열교환기식 제습기에서 LiCl 수용액의 열 및 물질전달 특성)

  • Jeon, Dong-Soon;Lee, Hae-Seung;Kim, Seon-Chang;Kim, Young-Lyoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Experimental investigations were carried out to examine the heat and mass transfer characteristics of LiCl aqueous solution for a plate heat exchanger type dehumidifier. Cooling dehumidification was adopted vertical type heat exchanger. Also non woven fabric is attached surface of the heat exchanger for spreadability of LiCl aqueous solution. Mass flow-rate of LiCl aqueous solution and concentration were selected as experimental conditions. Also, In this study, the effects of relative humidity of process air and velocity were investigated experimentally. As a result of heat transfer coefficient and mass transfer coefficient of were increased film reynolds number increased. heat transfer coefficient and mass transfer coefficient of LiCl aqueous solution were 0.14~0.24 kW/$m2^{\circ}C$ and $1.3{\times}10-63{\sim}6.2{\times}10-6$ m/s respectively.

Evaporation Heat Transfer Characteristics of Carbon Dioxide in the Inner Diameter Tube of 4.57 mm (4.57 mm 세관 열교환기 내 이산화탄소의 증발열전달 특성)

  • Ku, Hak-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The evaporation heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components or the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57 mm. The experiments were conducted at mass flux of 200 to $500\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat flux of 10 to $40\;kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not effect nucleate boiling too much. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Study on Evaporating Heat Transfer of HCs Refrigerants by Changing of Tube Diameter (관경별 탄화수소계 냉매의 증발 열전달에 관한 특성평가)

  • Lee, Kwang-Bae;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.41-42
    • /
    • 2005
  • The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm, 9.52 mm, 6.35 mm with 1.78 mm,1.52 mm,1.4 mm wall thickness each is used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22. and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22. The highest evaporating heat transfer coefficient of all refrigerants was shown in a tube diameter of 6.35 mm with same mass flux.

  • PDF

Characteristics of R-22 and R-134a Two-Phase Flow Vaporization in Horizontal Small Tubes

  • Choi, Kwang-Il;Pamitran, A.S.;Rifaldi, M.;Mun, Je-Cheol;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1528-1535
    • /
    • 2009
  • Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to $40\;kW/m^2$, mass flux range of 200 to $600\;kg/m^2s$, saturation temperature range of 5 to $10^{\circ}C$, and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.

  • PDF

Evaporating Heat Transfer Characteristics of R-290, R-600a Inside Horizontal Double Pipe Heat Exchangers (R-290, R-600a의 수평 이중관형 열교환기내 증발 특성)

  • 홍진우;노건상;권옥배;박기원;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • Experimental results for heat transfer characteristics of natural refrigerants R-290, R-600a and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The experimental apparatus is basically a vapour heat pump system, composed of a compressor, a condenser, expansion devices, a evaporator, and some other peripheral devices. The test sections were horizontal double pipe heat exchangers, which were a pair of smoothed tube, having 10.07 mm ID, 12.07 mm OD, and grooved inner fin tube, having 12.70 mm OD, 0.25 mm fin height, and 75 fins. The local evaporating heat transfer coefficients of natural refrigerants were not much affected with the mass velocity than R-22 and it could be interpreted that the local evaporating heat transfer coefficients of R-22 were increased more than those of R-290, R-600a according to the increment of mass velocity. Moreover, the maximum increment of the heat transfer coefficient was found in R-290. The average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner fin tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smoothed tube.

  • PDF

Estimation of Atmospheric Turbulent Fluxes by the Bulk Transfer Method over Various Surface (다양한 지표면 위에서 총체 전달 방법에 의한 대기 난류 플럭스 추정)

  • Kim, Min-Seong;Kwon, Byung-Hyuk;Kang, Dong-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1199-1211
    • /
    • 2014
  • The momentum flux and the sensible heat flux were measured with the scintillometers and ultrasonic anemometers at 6 sites of which surface characteristics like roughness length and zero-displacement are different each other. We estimated the momentum flux and the sensible heat flux based on the bulk transfer method with the drag coefficient and the heat transfer coefficient calculated from the temperature and wind speed at two heights. The variation of bulk transfer coefficients showed a remarkable difference depending on the atmospheric stability which is less influenced by the zero-displacement than the roughness length. The estimated sensible heat fluxes were in good agreement with those measured at 3 m, showing 23.7 $Wm^{-2}$ of the root mean square error that is less than 10% of its maximum. Since the estimated momentum flux is not only effected by drag coefficient but also by wind speed square, the determination of wind speed in the bulk transfer method is critical.