Browse > Article
http://dx.doi.org/10.5322/JESI.2014.23.6.1199

Estimation of Atmospheric Turbulent Fluxes by the Bulk Transfer Method over Various Surface  

Kim, Min-Seong (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University)
Publication Information
Journal of Environmental Science International / v.23, no.6, 2014 , pp. 1199-1211 More about this Journal
Abstract
The momentum flux and the sensible heat flux were measured with the scintillometers and ultrasonic anemometers at 6 sites of which surface characteristics like roughness length and zero-displacement are different each other. We estimated the momentum flux and the sensible heat flux based on the bulk transfer method with the drag coefficient and the heat transfer coefficient calculated from the temperature and wind speed at two heights. The variation of bulk transfer coefficients showed a remarkable difference depending on the atmospheric stability which is less influenced by the zero-displacement than the roughness length. The estimated sensible heat fluxes were in good agreement with those measured at 3 m, showing 23.7 $Wm^{-2}$ of the root mean square error that is less than 10% of its maximum. Since the estimated momentum flux is not only effected by drag coefficient but also by wind speed square, the determination of wind speed in the bulk transfer method is critical.
Keywords
Drag coefficient; Heat transfer coefficient; Bulk transfer method; Turbulent fluxes; Scintillometers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, S. J., Choi, T. J., Kim, S. J., 2013, Heat flux variations over sea ice observed at the coastal area of the sejong station, Antarctica, Asia-pacific J. Atmos. Sci., 49(4), 443-450.   DOI
2 Wieringa, J., 1976, An objective exposure correction method for average wind speeds measured at a sheltered location, Quart. J. Roy. Meteor. Soc., 102, 241-253.   DOI
3 Zhang, H. S., and Park, S. U., 1998, Bulk transfer coefficients over different surfaces, J. of Korean Meteor. Soc., 34(4), 664-669.
4 Zhao, P., Chen, L., 2000, The climate characteristics of surface turbulent exchange and surface heat source over the Qinghai-Tibet plateau, Acta Meteorological Sinica., 14, 13-29.
5 Mason, P. J., and Thompson, D. J., 1987, Large eddy simulations of the neutral-static-stability planetary boundary layer, Quart. J. Roy. Meteor. Soc., 25, 271-287.
6 Nieveen, J. P., and Green, A. E., 1999, Measuring sensible heat flux density over pasture using the CT2-profile method, Boundary layer meteorology, 91, 23-25.   DOI
7 Patil, M. N., 2006, Aerodynamic drag coefficient and roughness length for three seasons over a tropical western indian station, Atmospheric Research, 80, 280-293.   DOI   ScienceOn
8 Royal Aeronautical Society, 1972, Characteristics of wind speed in the lower layers of the atmosphere near the ground: Strong winds (neutral atmosphere). Engineering Science Data Unit. No. 72026, London.
9 Stanhill, G., 1969, A simple instrument for field measurement of turbulent diffusion flux, Journal of Applied Meteorology, 8(4), 509-513.
10 Stull, R. B., 1988, An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, pp. 666.
11 Tennekes, H., 1973, A model for the dynamics of the inversion above a convective boundary layer, J. Atmospheric Science, 30, 558-567.   DOI
12 Verkaik, J. W., 2000, Evaluation of two gustiness models for exposure correction calculations, J. Appl. Meteorol., 39, 1613-1626.   DOI
13 Vickers, D., and Mahrt, L., 1997, Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512-526.   DOI
14 Weiss, A. I., Hennes, M. and Rotach, M. W., 2001, Derivation of refractive index and temperature gradients from optical scintillometry to correct atmospherically induced errors for highly precise geodetic measurements, Surveys in Geophysics, 22, 589-596.   DOI   ScienceOn
15 Jia, L., Su, Z., Van den Hurk, B., Menenti, M., Moene, A., De Bruin, H. A. R., Risarry, J. J. B., Ibanez, M., Cuesta, A., 2003, Estimation of sensible heat flux using the surface energy balance system and ASTR measurement, Physics and Chemistry of the earth, 28, 75-88.   DOI   ScienceOn
16 Gao, Z., Wang, J., Ma, Y., Kim, J., Choi, T. J., Lee, H. C., Asanuma, J., Hu, Z., 2000, Study of roughness lengths and drag coefficients over Nansha area region, Gobi, desert, Oasis and Tibetan plateau, Phys. Chem. Earth (B), 25(2), 141-145.
17 Garratt, J. R., 1977, Review of drag coefficients over oceans and continents, Monthly Weather Review, 105, 915-929.   DOI
18 Kondo, J., 1975, Air-sea bulk transfer coefficients in diabatic conditions, Boundary layer meteorology, 9, 91-112.   DOI
19 Greenhut, G. K., 1982, Stability dependence of fluxes and bulk transfer coefficients in a tropical boundary layer, Boundary layer Meteorology, 24, 253-264.   DOI
20 Kanda, M., Moriwaki, R., Roth, M., and Oke, T., 2002, Area-Averaged Sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry, Boundary layer meteorology, 105, 177-193.   DOI
21 Kondo, J., and Kawanaka, A., 1986, Numerical study on the bulk heat transfer coefficient for a variety of vegetation types and densitys, Boundary layer meteorology, 37, 285-296.   DOI
22 Kwon, B. H., Benech, B., Lambert, D., Durand, P., Druilhet, A., Giordani, H., Planton, S., 1998, Structure of the marine atmospheric boundary layer over an oceanic thermal front. SEMAPHORE experiment, J. Geophys. Res., 103, Issue C11, p.25159-25180.   DOI
23 Launiainen, J., and Vihma, T., 1990, Derivation of turbulent surface fluxes - An iterative flux-profile method allowing arbitrary observing heights, Environmental Software, 5(3), 113-124.   DOI   ScienceOn
24 Beljaars, A. C. M., Schotanus, P., Nieuwstadt, F. T. M., 1983, Surface layer similarity under nonuniform fetch conditions, J. Clim. Appl. Meteorol., 22, 1800-1810.   DOI
25 Anandakumar, K., 1999, Sensible heat flux over a wheat canopy: optical scintillometer measurements and surface renewal analysis estimations, Agric. For. Meteorol., 96, 145-156.   DOI   ScienceOn
26 Carson, D. J., 1973, The development of a dry inversion-capped convectively unstable boundary layer, Quart. J. Roy. Meteorol. Soc., 99, 450-467.   DOI
27 Andre, J. C., DeMoor, P. L., Therry, G., 1978, Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer, J. Atmos. Sci., 35, 1861-1883.   DOI
28 Arya, S. P., 1998, Introduction to Micrometeorology, 2nd ed., Academic Press, San Diego, pp. 433.
29 Burns, S. P., Horst, T. W., Jacobsen, L., Blanken, P. D., Monson, R. K., 2012, Using sonic anemometer temperature to measure sensible heat flux in strong winds, Atmos. Meas. Tech., 5, 2095-2011.   DOI
30 Caughey, S. J., Wyngaard, J. C., Kaimal, J. C., Turbulence in the evolving stable boundary layer, J. Atmos. Sci., 36, 1041-1052.
31 De Bruin, H. A. R., Van den hurk, B. J. J. M., Kohsiek, W., 1995, The scintillation method tested over a dry vine yard area, Boundary layer Meteorology, 76, 25-40.   DOI
32 De Bruin, H. A. R., 2002, Introduction: Renaissance of Scintillometry, Boundary layer Meteorology, 105, 1-4.   DOI
33 Dong, Z., Gao, S., Donald, W. F., 2001, Drag coefficients, roughness length and zero-plane displacement height as distributed by artificial standing vegetation, Journal of Arid Environments, 49(3), 485-505.   DOI
34 Verkaik, J. W., and Holtslag, A. A. M., 2007, Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited, Boundary layer Meteor., 122, 701-719.   DOI
35 Li, G., Duan, T., Gong, Y., 2000, Bulk transfer coefficient and surface flux on the west of Tibetan plateau, Chinese Science Bulletin, 45, 1221.   DOI   ScienceOn