• 제목/요약/키워드: Heat Transfer Oil

검색결과 221건 처리시간 0.026초

선박 연료탱크 내 가온기의 열유동 및 안전성 평가에 관한 해석 (Study of Heat Transfer and Safety Evaluation for Heating Coils in the Fuel Tank of a Ship)

  • 문진권;박종천;권유홍;유원석;안수환
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.22-30
    • /
    • 2010
  • The fuel tank of a ship is filled with heavy fuel oil (HFO) that has a very high viscosity. In order to inject the HFO into the engine easily, heating coils are usually installed inside the fuel tank to heat the HFO and lower its viscosity. Currently, several different types of heating coils are used, e.g., fin-type, bare-type, drum-type, and shell-and-tube-type. It is well known that the shell-and-tube-type heating coil has good performance and high efficiency. In this study, experiments were conducted to determine the heat transfer efficiencies of three different shell-and-tube-type heating coils. Heat transfer efficiency was evaluated by using FLUENT 6.3.26 software. Also, structural safety was assessed by using ANSYS.simulation software.

공작기계 절삭유 냉각용 낮은 핀관의 열전달 성능에 관한 연구 (A Study on the Performance of Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil of the Machine Tool)

  • 조동현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.125-133
    • /
    • 1998
  • Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성 (Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;노건상;구학근;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구 (The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching)

  • 백세현;김현희;박호영;김영주;김태형;고성호
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.

나노유체의 열전도율 측정과 열전달 향상 (Measuring Thermal Conductivity of Nanofluids and Heat Transfer Enhancement)

  • 이신표;최철;오제명
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2006
  • A new class of heat transfer fluid with higher thermal conductivity, called nanofluids has been developed by Dr. S. Choi about decade ago. Many exciting experimental and theoretical results have been reported worldwide to predict the thermal conductivity enhancement of nanofluids, however, they sometimes show excessive large discrepancies between each other. This kind of disagreements in thermal conductivity data is partly ascribable to the accuracy of the measuring apparatus, that is, mostly used THM(transient hot-wire method). New thermal conductivity measuring method whose principle is different from that of conventional THM is proposed in this article and measurements and uncertainty analysis were made for the three nanofluid samples with different particle concentration of pure, 2% and 4% of AlN nanofluids.

  • PDF

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하 (The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

가열기가 내장된 냉매오일 분리기의 성능 고찰 (Performance Analysis of the Refrigerant oil separator with a build-in heater)

  • 김종열
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.41-46
    • /
    • 2011
  • Refrigerant oil reduces friction between piston and cylinder of compressor and is normally hard to mix or dissolve in refrigerant. Oil separator deprives refrigerating oil from mixed solution of refrigerant and refrigerant oil. Sometimes much machine oil is carried into an evaporator and is applied to surface of the evaporator, and then disturbs heat transfer through it. Well-made oil separator helps refrigerating system stable and evaporator sustain full capacity. In this paper, new oil separate with different way to structure is suggested and tested. As result the new separates is 13% higher at 0C with 10% mixture and 6% higher at 0C with 20% mixture.

가상 설계 환경을 활용한 지로터 펌프의 배제용적 증량 설계 사례 (Design for Increasing Displacement Volume of Gerotor Pumps using Virtual Design Environment)

  • 노대경;이동원;전정배;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.15-22
    • /
    • 2024
  • The objective of this study was to examine whether a gerotor pump used in a transmission could be converted into an electric vehicle thermal management system pump using a virtual design environment. To achieve this objective, we first built an environment that could analyze the performance of a gerotor pump in heat transfer fluid. Flow rate, pressure, and volumetric efficiency were then analyzed when using heat transfer fluid in a gerotor pump. Finally, how large the displacement volume of the pump should be designed when using a heat transfer fluid other than oil was determined. Based on results of this study, it is expected that gerotor pumps will be applied to new business fields such as electric vehicle cooling systems.