• 제목/요약/키워드: Heat Transfer Degradation

검색결과 74건 처리시간 0.024초

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

다공도가 다른 전열촉진관의 냉매 풀비등에 미치는 오일의 영향 (Effect of Oil on Pool Boiling of Refrigerant on Enhanced Tubes having Different Pore Sizes)

  • 김내현;이응렬;민창근
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.254-261
    • /
    • 2006
  • The effect of enhanced geometry (pore diameter, gap width) is investigated on the pool boiling of R-123/oil mixture for the enhanced tubes having pores with connecting gaps. Tubes with different pore diameters (and corresponding gap widths) are specially made. Significant heat transfer degradation by oil is observed for the present enhanced tubes. At 5% oil concentration, the degradation is 26 to 49% for $T_{sat}=4.4^{\circ}C$. The degradation increases 50 to 67% for $T_{sat}=26.7^{\circ}C$. The heat transfer degradation is significant even with small amount of oil (20 to 38% degradation at 1% oil concentration for $T_{sat}=4.4^{\circ}C$), probably due to the accumulation of oil in sub-tunnels. The pore size (or gap width) has a significant effect on the heat transfer degradation. The maximum degradation is observed for $d_p$ = 0.20 mm tube at $T_{sat}=4.4^{\circ}C$, and for $d_p$=0.23 mm tube at $T_{sat}=26.7^{\circ}C$. The minimum degradation is observed for $d_p$=0.27 mm tube for both saturation temperatures. It appears that the oil removal is facilitated for the larger pore diameter (along with larger gap) tube. The highest heat transfer coefficient with oil is obtained for $d_p$ =0.23 mm tube, which yielded the highest heat transfer coefficient for pure R-123. The heat transfer degradation increases as the heat flux decreases.

점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구 (A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids)

  • 엄정섭;전찬열;유상신
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

혼합냉매의 환상 유동 증발열전달 해석 (Analysis of Convective Boiling Heat Transfer for Refrigerant Mixtures in Annular Horizontal Flow)

  • 신지영;김민수
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.720-729
    • /
    • 1996
  • An analysis of convective boiling heat transfer for refrigerant mixtures is performed for an annular flow to investigate the degradation of the heat transfer rate. Annular flow is selected in this study because a great portion of the evaporator in the refrigeration and air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor is included in this analysis, which is considered to be one of driving forces for the mass transfer at the interface. Due to the concentration gradient at the interface the mass transfer is interfered, so is the evaporative heat transfer at the interface. The mass transfer resistance makes the interface temperature slightly higher and, as a result, the heat transfer coefficients decrease compared with those without mass transfer effects. The degradatioin of the heat transfer rate reaches its maximum at a certain composition. The composition difference between vapor core and vapor at the interface has a direct effect on the temperature difference between the vapor core and the interface and the degradation of the heat transfer rate. Correction factor $C_{F}$ for the mixture effects is added to the correlation for pure substances and the flow boiling heat transfer coefficients can be calculated using the modified equation.n.

탄화수소 냉매의 수평 원관내 응축열전달 특성 (Condensing heat transfer characteristics of hydrocarbon refrigerants in a horizontal tube)

  • 장영수;김민수;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1656-1667
    • /
    • 1997
  • Condensing heat transfer characteristics of hydrocarbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as test fluids. Local condensing heat transfer coefficients of selected refrigerants are obtained from overall conductance measurement. Average heat transfer coefficients at different mass fluxes and heat transfer rates are shown and compared with those of R22. Pure hydrocarbon refrigerants have higher values of heat transfer coefficient than R22. It is also found that there is a heat transfer degradation for hydrocarbon mixtures due to composition variation during condensation. Measured condensing heat transfer coefficients are compared with predicted values by available correlations. An empirical correlation for pure and mixed hydrocarbon is developed, and it shows good agreement with experimental data.

혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성 (Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures)

  • 김동섭;신지영;노승탁
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구 (An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow)

  • 유상신;황태성;엄정섭
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1189-1196
    • /
    • 1988
  • 본 연구에서는 내경이 각각 8.5mm와 10.3mm이며 무차원길이가 각각 710과 1158인 두 개의 시험관을 사용하는 유동장치를 제작하여 시험관 입구에서부터 유체역 학적 경계층(hydrodynamic boundary layer)과 열적 경계층(thermal boundary layer)이 동시에 발달하기 시작하는 경계조건을 형성하고 관벽에서 일정한 열 플럭스(constant heat flux)를 발생하는 조건을 부여하였다. 퇴화현상(degradation)에 대하여 비교적 안정성을 가진 폴리아크라마이드(polyacrylamide) Separan Ap273을 수도물에 용해하여 제조한 폴리머용액으로 유동특성과 열전달특성을 실험하여 열적입구길이와 열전달특성 을 규명하고자 한다.

원통형 다전극식 정전용량-전기전도도 센서를 이용한 연료전지 차량용 냉각수의 유전특성 평가 (Evaluation about Dielectric Property of Heat Transfer Fluids for Fuel Cell Vehicle using Cylindrical Multi-Terminal Capacitive-Conductive Sensor)

  • 김재훈;김주한;김윤형;최강월;한상옥;용기중
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1087-1094
    • /
    • 2010
  • We have developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid. It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Also to assess diagnosis characteristics of heat transfer fluid, i.e. coolant, we have performed accelerated aging test using developed sensor attached to cooling system. Consequently, it was measured dielectric and electric resistance of coolant to estimate and analyse for dielectric properties by degradation condition.

연도가스 열회수용 순환유동층 열교환기의 오염저감특성 (Fouling Reduction Characteristics of a Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery)

  • 이금배;전용두
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.770-777
    • /
    • 2004
  • Fouling and cleaning tests are performed for a uniquely designed 7,000 ㎉/hr fluidized bed heat exchanger for exhaust gas heat recovery. Fuel rich condition is maintained in the combustor for a limited time period to generate soot that is to be deposited on the heat transfer surfaces (fouling) and 600 Um glass beads are circulated inside the heat exchanger system for cleaning and enhancing the heat transfer performance. According to the present experimental study, performance degradation mode could be monitored and the effect of particle circulation on the heat transfer improvement could be identified. Through the present study, it is demonstrated that circulating particles contribute not only to the fouling reduction in gas side, but also to the heat transfer enhancement of the unit, while other possible aging factors including water side corrosion seemed to contribute to the accumulated performance deterioration.

차량용 연료전지 스택의 절연열화 진단을 위한 원통형 정전용량-전기전도도 센서개발 (Development of Cylindrical Capacitive-Conductive Sensor to Evaluate Insulating Degradation for FCEV Stack)

  • 김재훈;김주한;김윤형;최강월;한상옥;용기중
    • 전기학회논문지P
    • /
    • 제59권3호
    • /
    • pp.317-324
    • /
    • 2010
  • It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Consequently it was developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid.