• 제목/요약/키워드: Heat Transfer Control

검색결과 549건 처리시간 0.023초

원형 세관내 대류비등열전달에 관한 실험적 연구 (An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes)

  • 추원호;방광현
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

순환유동층 보일러 전열관의 열전달 특성 (Heat Transfer of Smooth and Finned Tubes in A CFBC)

  • 김부현;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.651-655
    • /
    • 2000
  • The objective of present work is to investigate experimentally the characteristics of heat transfer. A fluidized bed combustion has advantages of pollution control, fuel flexibility and excellent heat transfer. The present study investigates fundamental phenomena of bed-to-surface heat transfer in high temperature fluidized beds to improve design of immersed tube surface. The tested operating variables are bed temperature, supeficial velocity, mean size of bed material, and the rake angle of fin. Generally, heat transfer rates between the fluidized bed and immersed finned-tube are much higher than those of a smooth tube. A life time of finned-tube is generally longer than that of smooth tube.

  • PDF

Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구 (Control of Impinging Jet Heat Transfer with Mesh Screens)

  • 조정원;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF

Influence of the Inclination Angle and Liquid Charge Ratio on the Condensation in Closed Two-Phase Thermosyphons with Axial Internal Low-Fins

  • Cho, Dong-Hyun;Han, Kyu-il
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.422-428
    • /
    • 2003
  • This study concerns the performance of the heat transfer of the thermosyphons having 60, 70, 80. 90 axial internal low-fins in which boiling and condensation occurr. Water, HCFC-141b and CFC-11 have been used as the working fluids. The operating temperature, the liquid charge ratio and the inclination angle of thermosyphons have been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from experimental results. The experimental results have been assessed and compared with existing theories. As a result of the experimental investigation, it was found that the maximum heat flow rate in the thermosyphons is dependent upon the liquid charge ratio and inclination angle. A relatively high rate of heat transfer has been achieved by the thermosyphon with axial internal low-fins. The inclination of a thermosyphon has a notable influence on the condensation. In addition, the overall heat transfer coefficients and the characteristics at the operating temperature are obtained for the practical applications.

일중 피복온실의 관류열전달계수 산정 (Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse)

  • 황영윤;이종원;이현우
    • 생물환경조절학회지
    • /
    • 제22권2호
    • /
    • pp.108-115
    • /
    • 2013
  • 본 연구의 목적은 일중피복온실의 피복재에 대하여 우리나라 환경에 적합한 관류열전달계수를 산정하는 방법을 찾아내고 검증하여 다양한 온실조건 및 환경조건에서 관류열전달계수를 산정할 수 있는 모델을 제시하는 것이다. 온실내부 및 외부온도와 피복재 표면온도와의 상관관계를 분석한 결과 주간 및 야간 온도를 모두 고려하였을 때보다 야간온도만을 고려하였을 경우가 상관성이 훨씬 더 높은 것으로 나타났다. 피복재의 표면온도가 온실의 외부온도보다는 내부온도와 상관성이 더 높은 것으로 나타났다. 관류열전달계수를 산정하는데 사용된 5가지 종류의 대류 및 복사열전달계수 산정식을 비교한 결과 Kittas가 제안한 대류 및 복사열전달계수 산정식이 가장 적합한 것으로 나타났다. 피복재 표면온도의 측정값과 계산 값의 상관성을 분석한 결과 직선의 기울기는 1.009이고 절편은 0.001이며 결정계수가 0.98로 나타나 본 연구에서 제시된 관류열전달계수 산정모델이 신뢰성이 있음을 확인할 수 있었다. 온실내부로부터 피복재 내부표면으로 전달되는 열흐름량의 경우 모든 풍속구간에 대해 대류열전달량이 복사열전달량보다 더 컸으며 풍속이 증가할수록 그 차이가 증가하였다. 외부표면에서 손실되는 열흐름량의 경우 풍속이 낮을 때에는 대류열전달량에 비해 복사열전달량이 더 컸으나 풍속이 증가함에 따라 그 차이는 점점 줄어들어 풍속이 높을 때에는 대류열전달량이 더 커지는 것으로 나타났다. 피복재 외부 표면의 대류열전달량은 내부표면의 대류열전달량에 직선적으로 비례하여 증가하는 것으로 나타났다. 풍속이 증가함에 따라 관류열전달계수는 증가하고 피복재의 표면 온도는 감소하는 것을 확인할 수 있었고, 변화추세를 보면 관류열전달계수는 거듭제곱함수와 그리고 표면온도는 로그함수와 잘 일치하였다.

계면활성제의 농도가 유하액막의 열전달 특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on Heat Transfer in a Falling Liquid Film with Surfactant)

  • 김경희;강병하;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.150-155
    • /
    • 2006
  • Falling liquid plays a role in a wide variety of naturally occurring phenomena as well as in the operation of industrial process equipment where heat and mass transfer take place. In such cases, it is required that the falling film should spread widely on the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film affects the flow characteristics of the falling film. In this study the heat transfer characteristics for a falling liquid film has been investigated by an addition of the surface active agents. The falling liquid film was formed on a vertical flat plate. As the mass flow rate of liquid falling film is increased, the wetted area is a little increased while the heat transfer rate as well as heat transfer coefficient is significantly increased. It is also found that both wetted area and heat transfer rate is substantially increased while heat transfer coefficient is a little increased with an increase in the surfactant concentration at a given mass flow rate.

  • PDF

밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon)

  • 조기현;백이;정형길
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Heat Exchanger with Circulating Solid Particles

  • Ahn, Soo-Whan;Lee, Byung-Chang;Kim, Won-Cheol;Bae, Myung-Whan;Lee, Yoon-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1175-1182
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000.

아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립- (The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis -)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구 (Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger)

  • 서만수;이지성;김정한;강선일
    • 한국추진공학회지
    • /
    • 제24권3호
    • /
    • pp.59-70
    • /
    • 2020
  • 본 논문에서는 기존 적층형 배관의 총 열전달 계수 경험식을 활용할 때 발생하는 한계점을 해결하고자, 외부 총 열전달 계수의 강제 대류 열전달 계수 항을 독립적으로 도출하는 간소화된 모델링을 제안하고, 이를 극저온 환경의 실험 결과로 확인하였다. 액체 산소 냉각 나선형 열교환기가 액체 질소와 열교환하는 실험 장치를 구성하고 열교환기의 열전달량을 계측하여, 외부 총 열전달 계수를 도출하였다. 측정된 외부 총 열전달 계수가 모델링으로 예측 곡선과 일치함을 확인하였다.