• Title/Summary/Keyword: Heat Storage System

Search Result 690, Processing Time 0.027 seconds

Computer Simulation for Heat Transfer Analysis of Latent Heat Storage Units (잠열축열요소의 열전달에 관한 컴퓨터 시뮬레이션)

  • Ryou, Y.S.;Song, H.K.;Cho, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.336-343
    • /
    • 1992
  • In this study, to obtain basic information for the design of a latent heat storage system, (1) the cylindrical type and the rectangular type of latent heat storage elements were designed, (2) the finite element method was adopted for the prediction of temperature profile of phase change material in heating and cooling process, and (3) experiments were performed to verify the numerical solutions, and then (4) the optimum size of latent heat storage units was predicted by the computer simulation. The results could be summarized as follows : (1) In cooling process, the predicted temperatures of latent heat storage units by computer simulation were in good agreement with measured. (2) The effective diameter of cylindrical element was observed to be 28 mm and the effective thickness of rectangular element was observed to be 21 mm.

  • PDF

A Study on Comparison of Heat Transfer Characteristic and Heat Storage Capability of $C_{28}H_{58}$ and $Na_4P_2O_7{\cdot}10H_2O$ ($C_{28}H_{58}$$Na_4P_2O_7{\cdot}10H_2O$의 전열특성 및 축열성능 비교에 관한 연구)

  • Yim, Chang-Soon;Kim, Jun-Keun;Cho, Nam-Cheol;Kim, Young-Ki
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.41-50
    • /
    • 1991
  • Heat transfer phenomena and temperature characteristics in heat storage and release process in the heat storage system using PCM(Phase Change material) were studied experimentally. The melting points of Octacosane paraffin($C_{28}H_{58}$) and sodium pyrophosphate decahydrate ($Na_4P_2O_7{\cdot}10H_2O$) used for phase change materials are $62^{\circ}C$ and $79^{\circ}C$ respectively. Experiments were performed in order to investigate temperature distributions, the heat storage quantity and the release quantity on octacosane paraffin and sodium pyrophosphate decahydrate for heat storage and release in the heat storage system. Furthermore the comparison of these characteristics between paraffin and $Na_4P_2O_7{\cdot}10H_2O$ were evaluated. In case of the paraffin, temperature slowly increased at early heat storage process by natural convection, while temperature of $Na_4P_2O_7{\cdot}10H_2O$ rapidly increased the dominant role played by conduction at early heat storage processing Also, during the heat storage and release process in case of the paraffin, it was observed that the variation of temperature of the neighborhood of wall and center in the top and bottom of the tube exhibited a great difference, however in $Na_4P_2O_7{\cdot}10H_2O$, it was observed that the variation of temperature exhibited a little difference. And heat storage quantity of each PCM of identity mass in heat storage process was shown that $Na_4P_2O_7{\cdot}10H_2O$ exhibited more by 16 percents than paraffin.

  • PDF

A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank (축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구)

  • Park, Yong-Jung;Kim, Kyoung-Hoon
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.194-201
    • /
    • 2006
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump (GSHP) systems are recognized to be outstanding heating and cooling systems. A horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated the performance characteristics. The reasons for using thermal storage tank were discussed in detail. Thermal storage tank can provide heat for heating load that is larger than GSHP system heating capacity. The results of study showed that the heating coefficient of performance of the heat pump system was 2.69.

Empirical Results and Operational Cost Analysis of Geothermal Heat Pump System using Thermal Energy Storage in Cooling Season (축열식 지열원 히트펌프 시스템의 냉방기간 실증운전 결과 및 운영비용 분석)

  • Kim, Deukwon;Lee, Dongwon;Heo, Jaehyeok;Kim, Minhwi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • The geothermal heat pump systems were installed for heating and cooling of public buildings in Jincheon Eco-friendly Energy town. The heat pump system was operated at night to save on operational costs, and the cold heat was stored in thermal energy storage (TES). In this study, the performance of geothermal heat pump systems with the TES during the summer season was analyzed, and the operational costs with and without the TES were compared. The electric chiller model was used to simulate a heat pump applied without the TES system. Electric rates of each system were measured to calculate operational costs. When the TES is used in the air conditioning system, the electric load (30.4 MWh) calculated in the daytime can move to off-peak load time, and the operational cost is reduced by 36~54%.

A Study on the DSM Effect of a Refrigerant-Subcooling Refrigeration System with an Ice Storage Tank (축열조를 이용한 냉매과냉각 시스템의 전력수요관리 효과에 대한 연구)

  • Kim, Jeong-bae;Lee, Eun-Ji;Lee, Dong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.845-851
    • /
    • 2010
  • This study was experimentally performed to find the effects of refrigerant subcooling in the refrigeration system and to propose how to get the efficient use of energy. A refrigerant-subcooling refrigeration system consisted of a typical single vapor-compression refrigeration cycle, a subcooler, and an ice storage tank. The degree of subcooling at the exit of the condenser can be increased by the heat transfer between the subcooler and the ice storage tank. The cold heat in the ice storage tank was stored by using the refrigeration cycle during night time and then used to absorb the heat from the subcooler during daytime. The cooling capacity and COP of this system were higher than those of the conventional system due to the increase in the degree of subcooling. Typically, the refrigerant-subcooling system showed superior performance to the conventional refrigeration system and would also contribute to load leveling.

Empirical evaluation of the heating performance by a heat pump system with surplus heat from a greenhouse (온실 태양잉여열을 이용한 히트펌프시스템의 난방 성능평가에 관한 실증 연구)

  • Jeon, Byung-Yong;Park, Youn-Cheol;Ko, Gwang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2017
  • This study evaluated the heating performance of a hybrid heat pump system. The system was installed in a $100-m^2$ greenhouse to utilize surplus solar energy. A hybrid heat pump system was installed at Jocheon-ri, Jeju Island, for an empirical evaluation of the performance. The system consists of a heat storage tank and plate heat exchangers for several heat exchanges between the greenhouse and heat pump or storage tank. The system uses R410a as the working fluid and is controlled automatically by a defined set temperature of the greenhouse. This system incorporates two kinds of heat sources: outdoor air and a storage tank that collects heat from the topside of the greenhouse. The results showed that the heating capacity was 19.9 kW in the outdoor air source mode and 21.4 kW with direct heating from hot water in the thermal storage tank. These results are very similar to those of a previous study.

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

Feasibility Study on Leveling Method of Electric Power Load by Applying Thermal Storage Air Conditioning System (축열식 열원시스템 적용에 의한 전력부하 평준화의 경제성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Reducing global warming potential has become important, and as one of those methods for reducing it, economic evaluation by applying ice thermal storage air conditioning system was performed. The floor area and height of the subject building was assumed $5,000m^2$ and 20 m. Absorption chillerheater system and air source heat pump system was used for comparing to the subject system, and payback period method was used to perform economic evaluation. Although the running cost of ice thermal storage system is reduced compared to two systems, the ratio is not significant compared to the increase of initial construction expenses, and payback period was calculated to be about 7.7 and 79.3 years. However, the heat storage system should be approached from the viewpoint of long term rather than the economic standard in the present standard.

A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS (TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

Study on the Simulation of Heat Pump Heating and Cooling Systems to Hospital Building (병원 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구)

  • Choi, Young-Don;Han, Seong-Ho;Cho, Sung-Hwan;Kim, Du-Sung;Um, Chul-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.