• Title/Summary/Keyword: Heat Shock Protein

Search Result 604, Processing Time 0.029 seconds

Histone Deacetylase Inhibitor Trichostatin A Enhances Antitumor Effects of Docetaxel or Erlotinib in A549 Cell Line

  • Zhang, Qun-Cheng;Jiang, Shu-Juan;Zhang, Song;Ma, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3471-3476
    • /
    • 2012
  • Background and Objective: Histone deacetylase (HDAC) inhibitors represent a promising class of potential anticancer agents for treatment of human malignancies. In this study, we investigated the effect of trichostatin A (TSA), one such HDAC inhibitor, in combination with docetaxel (TXT), a cytotoxic chemotherapy agent or erlotinib, a novel molecular target therapy drug, on lung cancer A549 cells. Methods: A549 cells were treated with TXT, erlotinib alone or in combination with TSA, respectively. Cell viability, apoptosis, and cell cycle distribution were evaluated using MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide) assay, Hochst33258 staining and flow cytometry. Moreover, immunofluorescent staining and Western blot analysis were employed to examine alterations of ${\alpha}$-tubulin, heat shock protein 90 (hsp90), epidermal growth factor receptor (EGFR), and caspase-3 in response to the different exogenous stimuli. Results: Compared with single-agent treatment, co-treatment of A549 cells with TSA/TXT or TSA/erlotinib synergistically inhibited cell proliferation, induced apoptosis, and caused cell cycle delay at the $G_2/M$ transition. Treatment with TSA/TXT or TSA/erlotinib led to a significant increase of cleaved caspase-3 expression, also resulting in elevated acetylation of ${\alpha}$-tubulin or hsp90 and decreased expression of EGFR, which was negatively associated with the level of acetylated hsp90. Conclusions: Synergistic anti-tumor effects are observed between TXT or erlotinib and TSA on lung cancer cells. Such combinations may provide a more effective strategy for treating human lung cancer.

Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

  • Han, Jie;Xu, Yunhe;Yang, Di;Yu, Ning;Bai, Zishan;Bian, Lianquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor ${\alpha}$ (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.

HSP27 is Commonly Expressed in Cervical Intraepithelial Lesions of Brazilian Women

  • Dobo, Cristine;Stavale, Joao Norberto;Lima, Flavio De Oliveira;Ribeiro, Daniel Araki;Arias, Vitor;Gomes, Thiago Simao;Oshima, Celina Tizuko Fujiyama
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5007-5010
    • /
    • 2013
  • Heat shock proteins are molecular chaperones that may be constitutively present in cells protecting them from various stresses, such as extreme temperature, anoxia or chemical agents. Cervical cancer is the second most prevalent malignancy of women. In this study, we analyzed the expression of Hsp27 by immunohistochemistry in cervical intraepithelial lesions of Brazilian women, along with samples from non neoplasic lesions (NN). Cervical intraepithelial neoplasia I (CIN I), II (CIN II) and III (CIN III)/in situ carcinoma and squamous cell carcinoma (SCC) were included. Immunostaining was observed in 30 (100%) samples of NN, 46 (92%) in CIN I, 50 (100%) in CIN II, 52 (98.11%) in CIN III/CIS, and 46 (98.11%) in SCC. In group NN Hsp27 immunostaining was heterogeneous, more intense in basal and parabasal layers of the epithelium and less or absent in the intermediate and superficial layer. The majority of the samples of CIS and SCC presented strong staining in all epithelial layers. Metaplasic cells, when present, were strongly stained. In this study, Hsp27 protein was found to be commonly expressed in cervical epithelial cells.

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.

Immune Responses Induced by HSP60 DNA Vaccine against Toxoplasma gondii Infection in Kunming Mice

  • Li, Zhong-Yuan;Lu, Jing;Zhang, Nian-Zhang;Chen, Jia;Zhu, Xing-Quan
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.3
    • /
    • pp.237-245
    • /
    • 2018
  • Toxoplasma gondii can infect all the vertebrates including human, and leads to serious toxoplasmosis and considerable veterinary problems. T. gondii heat shock protein 60 (HSP60) is associated with the activation of antigen presenting cells by inducing initial immune responses and releasing inflammatory cytokines. It might be a potential DNA vaccine candidate for this parasite. A pVAX-HSP60 DNA vaccine was constructed and immune responses was evaluated in Kunming mice in this study. Our data indicated that the innate and adaptive immune responses was elicited by successive immunizations with pVAX-HSP60 DNA, showing apparent increases of CD3e+CD4+ and CD3e+CD8a+ T cells in spleen tissues of the HSP60 DNA-immunized mice ($24.70{\pm}1.23%$ and $10.90{\pm}0.89%$, P<0.05) and higher levels of specific antibodies in sera. Furthermore, the survival period of the immunized mice ($10.53{\pm}4.78day$) were significantly prolonged during the acute T. gondii infection. Decrease of brain cysts was significant in the experimental group during the chronic infection (P<0.01). Taken together, TgHSP60 DNA can be as a vaccine candidate to prevent the acute and chronic T. gondii infections.

Gene Expression Analysis of the Bromobenzene Treated Liver with Non-hepatotoxic Doses in Mice

  • Lim, Jung-Sun;Jeong, Sun-Young;Hwang, Ji-Yoon;Park, Han-Jin;Cho, Jae-Woo;Song, Chang-Woo;Kim, Yang-Seok;Lee, Wan-Seon;Moon, Jin-Hee;Han, Sang-Seop;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.268-274
    • /
    • 2005
  • Bromobenzene (BB) is well known hepatotoxicant. Also, BB is an industrial solvent that arouses toxicity predominantly in the liver where it causes centrilobular necrosis. BB is subjected to Cytochrome P450 mediated epoxidation followed by either conjugation with glutathione, enzymatic hydrolysis or further oxidation. In this study, we focused on BB-induced gene expression at non-hepatotoxic dose. Mice were exposed to two levels of BB, sampled at 24 h, and hepatic gene expression levels were determined to evaluate dose dependent changes. When examining the toxic dose of BB treated group in other previous studies, genes related to heat shock protein, oxidative stress, and drug metabolism are expressed. Compared to these results, our study, in which non-toxic dose of BB was administrated, showed similar patterns as the toxic conditions above. The purpose of the study was to select genes that showed changes in relation to the differing dose through confirmation of the difference within transcriptomic boundaries, but those that are not detected by the existing classic toxicology tools in non-hepatotoxic dose.

Detection of Mycobacterium avium ssp paratuberculosis in Korean Cattle by the Polymerase Chain Reaction (한우 혈액에서 PCR을 이용한 Mycobacterium avium ssp paratuberculosis의 검출)

  • Kim, Kwang-Hyun;Kwak, Kil-Han;Song, Hee-Jong;Cho, Jeong-Gon
    • Journal of Veterinary Clinics
    • /
    • v.27 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Mycobacterium avium ssp paratuberculosis, intracellular bacteria that can cause chronic granulomatous enteritis in cattle, continues to pose significant economic losses and health problem with high prevalence. The purpose of this study is the polymerase chain reaction (PCR)-base strategy for early detection of M. avium ssp paratuberculosis in whole blood. Blood samples were collected from korean cattles in Jeonbuk, Korea. The 16 out of 88 serum samples were detected M. partuberculosis by ELISA. Then samples of infected 8 Korean cattles were amplified by PCR. The PCR amplified targets are 16s rDNA and heat shock protein 65kDa (hsp 65). The 16s rDNA provided a highly sensitive and specific tool for the direct detection of mycobacteria. In addition M. avium was confirmed characteristically by the hsp65. Finally there were sure to M. avium ssp paratuberculosis by IS900 PCR. The restriction fragment length polymorphism was identified by PCR amplifications and subsequence restriction enzyme digestions with Pst I of a hsp65. These results indicate that confirm M. avium with 16s rDNA, hsp65 and a restriction fragment length polymorphism in the hsp65 gene can be seem the other pattern. Therefore, these results can be used for clinical direct detections of M. avium ssp paratuberculosis in whole blood of Korean cattle and also to be used epidemiological researches.

The Efficiency of RNA Interference in Bursaphelenchus xylophilus

  • Park, Jung-Eun;Lee, Kyong Yun;Lee, Se-Jin;Oh, Wan-Suk;Jeong, Pan-Young;Woo, Taeha;Kim, Chang-Bae;Paik, Young-Ki;Koo, Hyeon-Sook
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.81-86
    • /
    • 2008
  • RNA interference (RNAi) was performed on several essential genes in the pinewood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. Double-stranded RNA (dsRNA) was delivered to larvae or adult worms by soaking, electroporation, or microinjection. Soaking and electroporation of L2-L3 stage worms in solutions containing dsRNA for essential genes induced over 25% lethality after 5 days, and gene-specific phenotypes were observed. This lethality agreed with significant reductions of the targeted transcripts, as assayed by reverse-transcription coupled with real time PCR. Microinjection was the most efficient route as measured by the hatching rate of F1 embryos, which was reduced by 46%. When adult worms were soaked in dsRNA, lethality was induced in the F1 larvae, revealing the persistence of knockdown phenotypes. The penetrance of the RNAi phenotypes for essential genes was relatively low but consistent, indicating that RNAi should be useful for studying the in vivo functions of B. xylophilus gene products.

Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase

  • Tian, Yuxuan;Yu, Chen, Huimin;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpE-GroEL-GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.