• 제목/요약/키워드: Heat Pump Cooling & Heating System

검색결과 300건 처리시간 0.022초

지열 히트펌프 시스템의 계절별 지중 열교환 특성 및 지반내 온도 변화 (Temperature monitoring and seasonal borehole heat exchange rate characteristics of a geothermal heat pump system)

  • 심병완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.452-455
    • /
    • 2007
  • The geothermal heat pump system is designed for cooling and heating for three stories building (2,435 $m^2$) includes total 79 heat pumps. Therefore, the monitoring system is installed for each floor and the data is automatically transmitted to the monitoring system. Heat exchange rate and temperature of a geothermal heat pump system have been monitored for a long period. The seasonal operation of geothermal heat pump shows the different shape of heat exchange rate for cooling and heating. Ground water flow can influence on heat exchange rate and thermal storage of the system. In order to define the hydraulic characteristics and groundwater temperature variation, the relationships among air temperatures, groundwater temperatures, water table, and precipitation are analysed.

  • PDF

하수열원 열펌프 시스템의 성능 시뮬레이션 (A Characteristics Simulation of Heat Pump System for Sewage Water as a Heat Source)

  • 박일환;장기창;이영수;윤형기;백영진
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.280-286
    • /
    • 2008
  • In this study, characteristics simulation of heat pump system is investigated for heating and cooling using sewage water as a heat source. A simulation program for preestimate operation characteristics of heat pump system is developed. The performance of this system is resolved by several variables and the characteristics which is based on actual air and sewage temperature data. The simulation results agree well with the experimental values of COP. In the analysis of system characteristics, the COP is changed between $3\sim5$ in winter season for heating load, $4\sim6$ in summer season for cooling load. As the results of Life Cycle Cost analysis over a 15 year life cycle, the energy cost could be reduced by 250 million won if a heat pump system was used instead of a conventional boiler and an absorbtion refrigerator on the office building.

동시냉난방 열펌프의 전열회수 성능 특성에 관한 연구 (Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Heat Recovery Mode)

  • 최종민;정현준;주영주;강훈;김용찬
    • 설비공학논문집
    • /
    • 제20권11호
    • /
    • pp.718-726
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Hence, the development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a simultaneous heating and cooling heat pump was investigated in the heat recovery mode (HR mode). The system adopted a variable speed compressor using R410A with four indoor units and one outdoor unit. In the HR mode, the capacity and COP were improved as compared with those in the cooling or heating mode because the waste heat in the outdoor unit was utilized as useful heat in the indoor units. However, energy imbalance between heating and cooling capacity of each indoor unit was observed in the 2H-1C HR mode. Therefore, the performance of the system in the 2H-1C HR mode was enhanced by controlling refrigerant flow rate through the outdoor unit.

빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성 (Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink)

  • 김남태;최종민;손병후;백성권;이동철;양희정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

동시냉난방 열펌프 시스템의 운전모드별 성능특성에 관한 수치적 연구 (Numerical Study on the Performance Characteristics of a Simultaneous Heating and Cooling Heat Pump System at each Operation Mode)

  • 주영주;정현준;강훈;최종민;이무연;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.370-375
    • /
    • 2007
  • The cooling load in winter season is significant in many commercial buildings and hotels because of the usage of office equipments and high efficiency of wall insulation. The development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this numerical study, a 4-room simultaneous heating and cooling heat pump system was modeled and its performance was calculated at each operating mode. Also, performance analysis was compared with experimental results.

  • PDF

이중관 열교환기를 사용한 물 대 공기 열펌프 시스템의 설계와 성능해석 (Design and performance analysis of water-to-air heat pump system using double-tube heat exchanger)

  • 한도영;박관준
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.462-471
    • /
    • 1997
  • The water-to-air heat pump system requires relatively lower energy consumption and less installation space. The heat exchangers used for this system are the finned-tube type for the indoor unit and the double-tube type for the outdoor unit. Mathematical models for this system are developed and programmed in computer. Experimental data from various conditions are obtained and compared with calculated values from the computer simulation program. Differences of cooling capacity and COP are 1.25% and 0.47%, and those of heating capacity and COP are 0.51% and 0.13%, respectively. Simulation results are in good agreement with test results. Therefore, the developed program is effectively used for the design and the performance prediction of water-to-air heat pump system.

  • PDF

지열 이용 히트펌프 시스템의 열성능 해석 (Analysis of Thermal Performance of Ground-Source Heat Pump System)

  • 신우철;백남춘;김욱중;고득용
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

ATES 열펌프 시스템 성능 및 경제성 분석에 관한 연구 (Study on the Performance of an ATES Geothermal Heat Pump System and Economic Analysis)

  • 오명석;최종민
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.289-296
    • /
    • 2012
  • The aim of this study is to investigate the performance of a heating and cooling system with aquifer thermal energy storage(ATES heat pump system) known as one of the underground thermal energy storage application systems. The ATES system was composed of heat pump unit and ATES, which was installed in a factory building located in Anseoung. The system represented very high heating and cooling performance, and showed nearly constant COP at each heating and cooling season due to the stability of EWT. The economic analysis about an ATES system and a conventional system was also executed. The conventional system adopted an air-conditioner in the summer season and a LNG boiler in the winter season. The payback period of the ATES system was estimated by 6.62 years.

유출지하수열원 지열히트펌프의 냉난방성능 (Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

2단 승온 캐스케이드 히트펌프의 성능 특성에 관한 연구 (Study on the Performance of a Cascade Heat Pump with Two-stage Water Heating Process)

  • 장한별;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.27-32
    • /
    • 2016
  • It is estimated that only heating and cooling take about one third of the total energy consumption worldwide. However, the conventional heating and cooling systems have low efficiencies. Also, boilers and electric heaters that are mostly used to generate both domestic and industrial hot water are inefficient and high energy consumers. For this reason, cascade heat pumps which are known to be very energy efficient and have less environmental impact are being promoted to replace conventional heating, cooling and hot water systems. In this study, a newly designed cascade heat pump by two-stage water heating method has been experimentally investigated. By adopting the auxiliary heat exchanger, the performance of the system was increased. The performance enhancement rate of the system could be maximized by adjusting the low stage compressor speed rather than the high stage compressor speed. The performance of the system with the auxiliary heat exchanger was enhanced by 16.5%.