• 제목/요약/키워드: Heat Partitioning

검색결과 32건 처리시간 0.025초

Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

  • Jinmok Hur;Yung-Zun Cho;Chang Hwa Lee
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.397-410
    • /
    • 2023
  • This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl2, NH4Cl, and Cl2 as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl2, NH4Cl, and Cl2). Following heat treatment, the utilization of MgCl2 as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

수직 벽면에서 과냉 핵비등 시 열유속 분배에 관한 실험적 연구 (Experimental Study on Heat Flux Partitioning in Subcooled Nucleate Boiling on Vertical Wall)

  • 송준규;박준석;정샛별;김형대
    • 대한기계학회논문집B
    • /
    • 제38권6호
    • /
    • pp.465-474
    • /
    • 2014
  • 본 연구에서는 비등 열유속 분배 모델의 예측 정확성을 검증하기 위하여 수직평판 자연대류 과냉 비등에서 기화, 급랭, 및 단상대류 열전달 기구에 대한 열유속 분배 특성을 실험적으로 조사하였다. 비등 열유속의 분배를 위해 적외선 열화상 기법과 전반사 가시화 기법을 동기화하여 비등 표면의 열유속 분포와 액상-기상 분포를 동시에 측정하여 분석하는 실험을 수행하였다. 실험은 대기압 조건에서 과냉도 $10^{\circ}C$를 가지는 물을 이용하여 수행하였으며, 벽면과열도 $12^{\circ}C$ 및 평균 열유속 $283kW/m^2$ 조건에 대한 실험 결과를 분석에 활용하였다. 실험을 통해 획득된 열유속 분배 결과는 상관식을 이용한 예측 결과와 큰 차이를 보였으며, 기포이탈직경과 기포이탈 시 주변의 과열액체층이 함께 뜯겨져 나가는 효과를 고려한 기포영향인자가 차이를 만드는 주요 원인들로 파악되었다.

열분배모델을 이용한 수직유로에서의 저압 미포화비등 해석 (Numerical Study of Low-pressure Subcooled Flow Boiling in Vertical Channels Using the Heat Partitioning Model)

  • 이바로;이연건
    • 대한기계학회논문집B
    • /
    • 제40권7호
    • /
    • pp.457-470
    • /
    • 2016
  • 벽면비등 모델로 열분배모델을 채택하는 CFD 스케일의 전산해석코드는 저압 조건에서 미포화비등 발생 시 2상유동 변수의 해석 정확도가 낮은 것으로 알려진다. 본 연구에서는 열분배모델을 기반으로 벽면비등 현상을 예측하는 열수력 기기해석코드인 CUPID 코드를 이용하여 수직상향류 미포화비등 실험을 해석하였다. 10 bar 이상의 고압 조건에서는 CUPID 코드의 기포율 예측 정확도가 높았으나, 대기압 주변의 저압 조건에서는 기포율 분포에 대한 해석결과가 실험결과와 큰 차이를 보였다. 따라서 열분배모델 내 주요 인자에 사용되는 부모델에 대한 민감도 분석을 수행하였으며, 저압 조건 미포화비등 예측에 적합한 최적 부모델 조합을 선정하였다. 또한, 열분배모델 내 주요 인자 중 하나인 K-인자가 기포율에 미치는 영향을 평가하였다.

Partitioning Behavior of Selected Printing Ink Solvents between Headspace and Chocolate Cookie Samples

  • An, Duek-Jun
    • Preventive Nutrition and Food Science
    • /
    • 제16권3호
    • /
    • pp.267-271
    • /
    • 2011
  • Static Headspace Gas Chromatographic analysis was used to study the partitioning behavior of five organic printing ink solvents between chocolate cookie/air systems. Three cookie sample formulations varied with respect to chocolate type and overall percentage of constituents. Major considerations involved differences in fat content and type and resulting variability in chemical and physical structure. Each of the solvents studied (ethyl acetate, hexane, isopropanol, methyl ethyl ketone, toluene) represents a general class of printing ink solvents based on predominate functional group. Values of the partitioning coefficient (Kp) were determined at equilibrium using measured quantities of both solvent and cookie sample in closed systems at temperature of 25, 35, and $45^{\circ}C$. In each of the three cookies at the three test temperatures, toluene always exhibited the greatest value of partitioning to cookie and hexane always exhibited the least. Results also showed that the partitioning behavior of solvents is generally inversely related to temperature and that solvent affinity, though constant for a particular cookie type over all test temperatures, varies significantly among the three cookie types. The preference of each of the five solvents for each cookie sample was also found to vary with temperature. No correlation was found between the extent of partitioning and cookie formulation or physical characteristic of solvent. The Hildebrand parameter, related to ${\Delta}Hmix$ (heat of mixing), may be used to describe differences in partitioning based on the overall potential of a solvent/cookie interaction to occur. The potential for interaction is dependent upon the chemical structure of the cookie sample and thus the availability of 'active-sites' required for a given solvent.

Q&P와 AM강의 잔류오스테나이트 분율과 안정도에 따른 인장특성 거동 (Effects of Stability and Volume Fraction of Retained Austenite on the Tensile Properties for Q&P and AM Steels)

  • 변상호;오창석;남대근;김영석;강남현;조경목
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.305-312
    • /
    • 2009
  • The effects of Quenching and Partitioning (Q&P) and Annealed Martensite (AM) heat treatment on the microstructure and tensile properties were investigated for 0.24C-0.5Si-1.5Mn-1Al steels. The Q&P steels were annealed at a single phase ($\gamma$) or a dual phase (${\gamma}+{\alpha}$), followed by quenching to a temperature between $M_s$ and $M_f$. Then, enriching carbon was conducted to stabilize the austenite through the partitioning, followed by water quenching. The AM steels were intercritically annealed at a dual phase (${\gamma}+{\alpha}$) temperature and austempered at $M_s$ and $M_s{\pm}50^{\circ}C$, followed by cooling in oil quenching. The dual phase Q&P steels showed lower tensile strength and yieldyield strength than those of the single phase Q&P steels, and tThe elongation for the dual phase Q&P steel was partitioning 100s higher than that of that for the single phase Q&P steels as the partitioning time was less than 100s up to partitioning 100s. For AM steels, the tensile/yield strength decreased and the total elongation increased as the austempering temperature increased. The stability of the retained austenite controlled the elongation for Q&P steels and the volume fraction of the retained austenite controlled the elongation for AM steels.

층류 예혼합화염의 화염면 형상 제어에 관한 연구 (A Study on the Control of Flame Shapes in Laminar Pre-Mixed Flames)

  • 이원남;서동규
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.103-108
    • /
    • 2003
  • The control of flame shapes in a laminar pre-mixed flame has been experimentally investigated for propane/air pre-mixed laminar flames. Flames of different size and shapes are observed with heated wires or by controlling the equivalence ratio and flow rate of a mixture. The characteristics of the partitioning of a flame or the merge of flames are analyzed and explained by considering the balance between laminar flame speed and upstream mixture velocity. A combustor might be sized down while maintaining its heat production rate the same by partitioning a flame established in it. When the equivalence ratio of mixture is decreased, individual flames are merged together and the upstream mixture velocity can be practically decreased on a nozzle having opening ratio less than unity. As a result, the flame shape is to he adjusted until the newly established balanced condition is satisfied, and then. the stable combustion can be achieved again.

  • PDF

Comparative Analysis of Strengthening with Respect to Microstructural Evolution for 0.2 Carbon DP, TRIP, Q&P Steels

  • Jin, Jong-Won;Park, Yeong-Do;Nam, Dae-Geun;Lee, Seung-Bok;Kim, Sung-Il;Kang, Nam-Hyun;Cho, Kyung-Mox
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.293-299
    • /
    • 2009
  • The microstructures and mechanical properties of Dual Phase (DP), Transformation-Induced Plasticity (TRIP), and Quenching & Partitioning (Q&P) steels were investigated in order to define the strengthening mechanism of 0.2 C steel. An intercritical annealing between Ac1 and Ac3 was conducted to produce DP and TRIP steel, followed by quenching the DP and TRIP steel being quenched at to room temperature and by the TRIP steel being austemperingaustempered-air cooling cooled the steel toat room temperature, respectively. The Q&P steel was produced from full austenization, followed by quenching to the temperature between $M_s$ and $M_f$, and then enriching the carbon to stabilize the austenite throughout the heat treatment. For the DP and TRIP steels, as the intercritical annealing temperature increased, the tensile strength increased and the elongation decreased. The strength variation was due to the amount of hard phases, i.e., martensite and bainite, respectively in the DP and TRIP steels. It was also found that the elongation also decreased with the amount of soft ferrite in the DP and TRIP steels and with the amount of the that was retained in the austenite phasein the TRIP steel, respectively for the DP and TRIP steels. For the Q&P steel, as the partitioning time increased, the elongation and the tensile strength increased slightly. This was due to the stabilized austenite that was enriched with carbon, even when the amount of retained austenite decreased as the partitioning time increased from 30 seconds to 100 seconds.

Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code

  • Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2276-2296
    • /
    • 2022
  • This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.

A New Method to Retrieve Sensible Heat and Latent Heat Fluxes from the Remote Sensing Data

  • Liou Yuei-An;Chen Yi-Ying;Chien Tzu-Chieh;Chang Tzu-Yin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.415-417
    • /
    • 2005
  • In order to retrieve the latent and sensible heat fluxes, high-resolution airborne imageries with visible, near infrared, and thermal infrared bands and ground-base meteorology measurements are utilized in this paper. The retrieval scheme is based on the balance of surface energy budget and momentum equations. There are three basic surface parameters including surface albedo $(\alpha)$, normalized difference vegetation index (NOVI) and surface kinetic temperature (TO). Lowtran 7 code is used to correct the atmosphere effect. The imageries were taken on 28 April and 5 May 2003. From the scattering plot of data set, we observed the extreme dry and wet pixels to derive the fitting of dry and wet controlled lines, respectively. Then the sensible heat and latent heat fluxes are derived from through a partitioning factor A. The retrieved latent and sensible heat fluxes are compared with in situ measurements, including eddy correlation and porometer measurements. It is shown that the retrieved fluxes from our scheme match with the measurements better than those derived from the S-SEBI model.

  • PDF

Influence of fin partitioning of a Rayeigh-Bénard cavity at low Rayleigh numbers

  • Zilic, Adis;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권4호
    • /
    • pp.411-430
    • /
    • 2018
  • This computational study examines the augmentation of classic 2-D Rayleigh-$B{\acute{e}}nard$ convection by the addition of periodically-spaced transverse fins. The fins are attached to the heated base of the cavity and serve to partition the cavity into 'units' with different aspect ratios. The respective impacts upon heat transfer of the fin configuration parameters - including spacing, height, thickness and thermal conductivity - are systematically examined through numerical simulations for a range of laminar Rayleigh numbers (0 < Ra < $2{\times}10^5$) and reported in terms of an average Nusselt number. The selection of the low Rayleigh number regime is linked to likely scenarios within aerospace applications (e.g. avionics cooling) where the cavity length scale and/or gravitational acceleration is small. The net heat transfer augmentation is found to result from a combination of competing fin effects, most of which are hydrodynamic in nature. Heat transfer enhancement of up to $1.2{\times}$ that for a Rayleigh-$B{\acute{e}}nard$ cavity without fins was found to occur under favorable fin configurations. Such configurations are generally characterized by short, thin fins with half-spacings somewhat less than the convection cell diameter from classic Rayleigh-$B{\acute{e}}nard$ theory. In contrast, for unfavorable configurations, it is found that the introduction of fins can result in a significant reduction in the heat transfer performance.