• 제목/요약/키워드: Heat Panel

검색결과 397건 처리시간 0.029초

비등온 실린더 모델을 이용한 태양로의 강제 대류에 의한 열 손실 분석 (Forced Convection Modelling of a Solar Central Receiver using Nonisothermal Cylinders in Crossflow)

  • 천원기;전명석;전홍석;오정무;로버트벰
    • 태양에너지
    • /
    • 제10권3호
    • /
    • pp.13-18
    • /
    • 1990
  • 표면 온도가 균일하지 않은 원통을 균속도 유동장에 가로 놓았을 경우, 표면에서의 열전달 특성은 표면이 등온이거나 일정한 heat flux가 주어졌을 때와는 판이하게 다르다. 본 연구에서는 공기의 균속도 유동장내에서 두가지 경우(step형 및 선형변화)의 비등은 경제조건이 원통면을 따라 원주방향으로 주어졌을 때 표면에서의 열전달 특성을 고찰하였다. Step형 변화는 원통형 태양로의 표면에서 관찰될 수 있다. Solar One(Califomia주의 Barstow시에 있는 태양로)의 경우, 작동유체(물)는 표면을 따라 원주방향과 수직으로 설치된 튜브를 따라 흐르면서 액체상태로부터 고온고압의 증기로 변한다. 이 과정에서 태양로 표면의 receiver panel은 그 위치에 따라, preheater, boiler, 그리고 superheater의 역할을 수행하며 표면의 온도도 균일하지 않은 분포를 나타낸다. 이와 같은 경우 표면의 평균 온도를 가지고 대류에 의한 열 손실을 계산하면 큰 오류를 범할 가능성이 있다.

  • PDF

CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증 (Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE)

  • 이덕영;최보성;최원호;안장호
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.

알루미늄 보강판의 압축 최종강도 붕괴 해석 (Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load)

  • 박주신;고재용;김윤영
    • 한국항해항만학회지
    • /
    • 제31권10호
    • /
    • pp.825-831
    • /
    • 2007
  • 일반적으로 선박 및 해양구조물에서 사용하고 있는 고강도 알루미늄 재료들은 일반 강재에 비해서 많은 이점들을 가지고 있다. 이러한 알루미늄 재료들은 여러 분야에 걸쳐서 폭넓게 사용되고 있으며, 특히, 초고속 선박의 선체와 갑판부에 많이 이용되어지고 있고, 교량구조물에 사용되는 박스 거더, 그리고 해양구조물의 갑판부와 선측구조에도 널리 이용되고 있다. 이러한 알루미늄 구조는 전체적인 구조부재의 중량을 감소하게 하면서 선속의 증가를 가져온다. 일반적인 강구조물의 응력-변형률 관계와 비교하여 보면, 용접가공에 의하여 발생되는 열영향부의 존재로 인하여 상당히 다르게 나타난다. 왜냐하면, 강구조물에 비해 열전도율이 높아서, 열영향부(heat affected zone, HAZ)의 영향이 크게 작용하기 때문이다. 본 논문에서는 종방향 압축하중을 받는 알루미늄 보강 판넬의 최종강도 특성에 대하여, 열영향부의 범위를 변화한 유한요소해석을 통하여, 열영향부의 범위와 파굴 및 최종강도 거동의 관계에 대해서 고찰하였다.

공간적 자기상관성을 고려한 폭염취약지역 도출에 관한 연구 - 대구광역시를 중심으로 (A Study on Identification of the Heat Vulnerability Area Considering Spatial Autocorrelation - Case Study in Daegu)

  • 성지훈;이기림;권용석;한유경;이원희
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.295-304
    • /
    • 2020
  • IPCC는 기상이변의 예방 대책의 중요성을 권고하였으며 폭염은 주요 예방대책수립 주제 중 하나이다. 일반적으로 예방대책수립을 위한 기존 연구는 지형적 특성과 사회적 특성을 따로 구분하여 폭염취약지역을 도출하였으나 본 연구에서는 공간, 지형적 특성뿐만 아니라 사회적 특성을 함께 고려하여 폭염취약지역을 분석하고자 하였다. 에너지 사용량, 인구밀도, 정규식생지수, 수변이격거리, 태양복사량, 도로분포를 변수로 하여 점검하고, 여러 회귀모형 중 가장 적합한 모형인 Spatial Lag Model을 선택하여 사용가능한 변수를 추출하였다. 그리고 Fuzzy 이론에 기초하여 각 변수에 대한 폭염 취약정도를 분석하고, 6개의 변수를 중첩분석하여 최종적으로 폭염취약지역을 도출하였다. 연구 대상지는 폭염의 영향이 큰 대구광역시를 선정하였으며, 취약지역의 경우 기존 도심지이며 수변 및 식생에 영향을 적게 받은 대구 서구, 남구, 달서구에 주로 분포되어있음을 확인하였다. 이를 통해 대구광역시의 폭염 저감을 위한 정책적 지원에 있어 공간적, 사회적 특성을 모두 고려해야 함을 확인하였다.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향 (Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition)

  • 최재웅;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구 (Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity)

  • 김창희;장현태;박종세;윤종국;노은섭;박지수;구경완
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

나노입자를 첨가한 전극용 무연 silver 페이스트의 제조 (Preparation of Lead-free Silver Paste with Nanoparticles for Electrode)

  • 박성현;박근주;장우양;이종국
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.

OLED 소자 제조를 위한 주울 가열 봉지 공정 시 도전층 구조에 따르는 열분포 (Temperature Distribution According to the Structure of a Conductive Layer during Joule-heating Induced Encapsulation for Fabrication of OLED Devices)

  • 장인구;노재상
    • 한국표면공학회지
    • /
    • 제46권4호
    • /
    • pp.162-167
    • /
    • 2013
  • Encapsulation is required since organic materials used in OLED devices are fragile to water vapor and oxygen. Laser sealing method is currently used where IR laser is scanned along the glass-frit coated lines. Laser method is, however, not suitable to encapsulating large-sized glass substrate due to the nature of sequential scanning. In this work we propose a new method of encapsulation using Joule heating. Conductive layer is patterned along the sealing lines on which the glass frit is screen printed and sintered. Electric field is then applied to the conductive layer resulting in bonding both the panel glass and the encapsulation glass by melting glass-frit. In order to obtain uniform bonding the temperature of a conductive layer having a shape of closed loop should be uniform. In this work we conducted simulation for heat distribution according to the structure of a conductive layer used as a Joule-heat source. Uniform temperature was obtained with an error of 5% by optimizing the structure of a conductive layer. Based on the results of thermal simulations we concluded that Joule-heating induced encapsulation would be a good candidate for encapsulation method especially for large area glass substrate.