• Title/Summary/Keyword: Heat Load

Search Result 1,728, Processing Time 0.029 seconds

Experimental Study of Process Chiller for Semiconductor Temperature Control (반도체 공정 온도제어용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2011
  • Excessive heat may be generated during the semiconductor manufacturing process. Therefore, precise control of temperature is required to maintain a constant ambient temperature and wafer temperature in the chamber. Compared to an industrial chiller, a semiconductor chiller's power consumption is high because it is in continuous operation for a year. Because of this high power consumption, it is necessary to develop an energy-efficient chiller by optimizing the operation. The competitiveness of domestic products is low because of the high energy consumption. We experimentally investigated a domestic semiconductor by conducting load change, temperature rise and fall, and control precision experiments. The experimental study showed that the chiller had 2.1-3.9 kW of cooling capacity and 0.56-0.93 of EER. The control precisions were ${\pm}1^{\circ}C$ and ${\pm}0.6^{\circ}C$ when the setting temperatures were $0^{\circ}C$ and $30^{\circ}C$ respectively.

Formulation of Friction Forces in LM Ball Guides (LM 볼가이드의 마찰력 정식화)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.199-206
    • /
    • 2016
  • Linear motion (LM) ball guides with rolling contact are core units of feed-drive systems. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, the friction force induced from LM ball guides generates heat, which deteriorates positioning accuracy and incurs changes of stiffness and preload. To accurately analyze the effects and apply the results to precision machine design, mathematical modeling of the friction force is required. In this paper, accurate formulation of the friction force due to rolling, viscous, and slip frictions is conducted for LM ball guides. To verify the reliability of the developed friction model, experiments are performed under various assembly, load and velocity conditions. Effects of frictional components are analyzed through the formulated friction model.

Effect of Compression Ratio Change on Emission Characteristics of HCNG Engine (압축비 변화가 수소-천연가스 엔진의 배기특성에 미치는 영향)

  • Lee, Sung Won;Lim, Gi Hun;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.473-479
    • /
    • 2013
  • This study focused on a heavy-duty natural gas engine fuelled with HCNG (CNG: 70 vol%, hydrogen: 30 vol%) and CNG. To study the emission characteristics of an HCNG engine with high compression ratio, the exhaust gas of CNG and HCNG fuel were analyzed in relation to the change in the compression ratio at the half load condition. The results showed that the thermal efficiency improved with an increase in the compression ratio. Consequently, $CO_2$ emission decreased. CO emission increased with inefficient oxidation due to the low exhaust gas temperature. $NO_x$ emission with high compression ratio was increased at the same excess air ratio condition. However, $NO_x$ emission was not affected by a compression ratio exceeding ${\lambda}$ = 1.9 because of the same MBT timing.

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

Finite Element Analysis for Temperature Distribution Prediction of Steady Rolling Tires with Detailed Tread Pattern (패턴 형상을 고려한 회전하는 타이어의 온도 예측을 위한 유한 요소 해석)

  • Jeong, Kyoung Moon;Kang, Sung Ju;Park, Woo Cheol;Kim, Hyoung Seok;Kim, Kee Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2014
  • The temperature distribution of steady state rolling tires with detailed tread blocks is numerically predicted using the three dimensional full patterned tire model. A three dimensional periodic patterned tire model is constructed by copying 1-sector mesh in the circumferential direction. Using the static tire contact analysis, the strain cycles during one revolution are approximated with the strains at Guassian points of the elements which are sector-wise repeated within the same circular ring of elements, by neglecting the tire rolling effect. Based upon the multi-axial fatigue theory, the maximum principal strain is used to represent the combined effect of six strain components on the hysteretic loss. In the following, the deformation due to the inflation and vertical load is calculated using ABAQUS. Then heat generation rate in each element is calculated using an in-house code. Lastly, temperature distribution is calculated using ABAQUS again. Through the numerical experiments, the validity of the proposed prediction method is examined by comparing with the experiment and the temperature distribution of a patterned tire model is compared with those of the main-grooved simple tire model.

A STUDY OF THERMAL ANALYSIS OF KAONICS (적외선 카메라 KAONICS의 열해석)

  • Kang, Ji-Na;Lee, Sung-Ho;Jin, Ho;Park, Soo-Jong;Moon, Bong-Kon;Kim, Sang-Ho;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.467-480
    • /
    • 2004
  • It is very important to eliminate thermal background radiation for the near infrared camera system such as KAONICS (KAO Near Infrared Camera System). Thermal background radiations which come from window and cryostat wall influence IR detector and decrease IR system performance. Therefore the cold box which contains optics and detector housing must be cooled down to eliminate thermal background radiation. We carried out quantitative analysis to determine internal cooling temperature to reduce thermal noise in the J, H, Ks, and L bandpass. Additionally, we estimated the incoming heat load and then chose the cryocooler adequate to KAONICS's requirements. The cooling time and the final cooling temperature of the cold box were calculated. These results were also implemented to the system design.

Study on The Supplying effect of Gas Air Conditioning Systems (가스냉방 보급효과에 대한 연구)

  • Han, J.O.;Chae, J.M.;Choi, K.S.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2011
  • Generally, the generation methods of cooling energy are electric air conditioning (EAC) and gas air conditioning (GAC). The EAC system is caused by increasing peak power during summer. Because the electric energy has a characteristic of non-storage, the peak electric load has been issued social problem annually whether the facility to supply is enough or not. Another way to supply cooling energy, GAC system is worked by gas energy. The absorption chiller and gas engine heat pump have been commercialized for cooling. However, the total capacity of GAC is much less than EAC and it almost depends on EAC for small market. This paper described the status of cooling energy consumption in domestic and expected the cooling energy to be consumed by electric and gas energy up to 2024 year. And also the benefit of GAC was analyzed with the case of its expansion and it was aimed to give background to fit the GAC policy.

An Experimental Study on the Ventilation velocity of the Variation of Burning rate in Tunnel Fires - Heptane pool fire case (터널 화재시 배연속도가 연소율변화에 미치는 실험적 연구 - Heptane 풀화재 경우)

  • Ryou, Hong-Sun;Yang, Seung-Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the ventilation velocity of the variation of burning rate in tunnel fires. The heptane square pool fire with heat release rate ranging from 3.71~15.6 kW were used. The burning rate of fuel was obtained by measuring mass using load cell and temperature distributions were measured by K-type theomocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In heptane pool fire case, the increase in ventilation velocity incresed the burning rate due to the direct supply of oxygen to the fire plume. For the same dimensionless velocity($\bar{V}$), burning rate increased as the size of pool fire decreased.

  • PDF

Experiment and bearing capacity analyses of dual-lintel column joints in Chinese traditional style buildings

  • Xue, Jianyang;Ma, Linlin;Wu, Zhanjing;Zhai, Lei;Zhang, Xin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.641-653
    • /
    • 2018
  • This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.